« Return to documentation listing
NAME
orterun, mpirun, mpiexec - Execute serial and parallel jobs in Open
MPI.
Note: mpirun, mpiexec, and orterun are all synonyms for each other.
Using any of the names will produce the same behavior.
SYNOPSIS
Single Process Multiple Data (SPMD) Model:
mpirun [ options ] <program> [ <args> ]
Multiple Instruction Multiple Data (MIMD) Model:
mpirun [ global_options ]
[ local_options1 ] <program1> [ <args1> ] :
[ local_options2 ] <program2> [ <args2> ] :
... :
[ local_optionsN ] <programN> [ <argsN> ]
Note that in both models, invoking mpirun via an absolute path name is
equivalent to specifying the --prefix option with a <dir> value equiva-
lent to the directory where mpirun resides, minus its last subdirec-
tory. For example:
% /usr/local/bin/mpirun ...
is equivalent to
% mpirun --prefix /usr/local
QUICK SUMMARY
If you are simply looking for how to run an MPI application, you proba-
bly want to use a command line of the following form:
% mpirun [ -np X ] [ --hostfile <filename> ] <program>
This will run X copies of <program> in your current run-time environ-
ment (if running under a supported resource manager, Open MPI's mpirun
will usually automatically use the corresponding resource manager
process starter, as opposed to, for example, rsh or ssh, which require
the use of a hostfile, or will default to running all X copies on the
localhost), scheduling (by default) in a round-robin fashion by CPU
slot. See the rest of this page for more details.
OPTIONS
mpirun will send the name of the directory where it was invoked on the
local node to each of the remote nodes, and attempt to change to that
directory. See the "Current Working Directory" section below for fur-
ther details.
<program> The program executable. This is identified as the first non-
recognized argument to mpirun.
<args> Pass these run-time arguments to every new process. These
execution.
-v, --verbose
Be verbose
-V, --version
Print version number. If no other arguments are given, this
will also cause orterun to exit.
To specify which hosts (nodes) of the cluster to run on:
-H, -host, --host <host1,host2,...,hostN>
List of hosts on which to invoke processes.
-hostfile, --hostfile <hostfile>
Provide a hostfile to use.
-machinefile, --machinefile <machinefile>
Synonym for -hostfile.
To specify the number of processes to launch:
-c, -n, --n, -np <#>
Run this many copies of the program on the given nodes. This
option indicates that the specified file is an executable pro-
gram and not an application context. If no value is provided for
the number of copies to execute (i.e., neither the "-np" nor its
synonyms are provided on the command line), Open MPI will auto-
matically execute a copy of the program on each process slot
(see below for description of a "process slot"). This feature,
however, can only be used in the SPMD model and will return an
error (without beginning execution of the application) other-
wise.
-npersocket, --npersocket <#persocket>
On each node, launch this many processes times the number of
processor sockets on the node. The -npersocket option also
turns on the -bind-to-socket option.
-npernode, --npernode <#pernode>
On each node, launch this many processes.
-pernode, --pernode
On each node, launch one process -- equivalent to -npernode 1.
To map processes to nodes:
-loadbalance, --loadbalance
Uniform distribution of ranks across all nodes. See more
detailed description below.
-nolocal, --nolocal
Do not run any copies of the launched application on the same
node as orterun is running. This option will override listing
the localhost with --host or any other host-specifying mecha-
nism.
-nooversubscribe, --nooversubscribe
ranks in a round-robin, "by node" manner.
For process binding:
-bycore, --bycore
Associate processes with successive cores if used with one of
the -bind-to-* options.
-bysocket, --bysocket
Associate processes with successive processor sockets if used
with one of the -bind-to-* options.
-cpus-per-proc, --cpus-per-proc <#perproc>
Use the number of cores per process if used with one of the
-bind-to-* options.
-cpus-per-rank, --cpus-per-rank <#perrank>
Alias for -cpus-per-proc.
-bind-to-core, --bind-to-core
Bind processes to cores.
-bind-to-socket, --bind-to-socket
Bind processes to processor sockets.
-bind-to-none, --bind-to-none
Do not bind processes. (Default.)
-report-bindings, --report-bindings
Report any bindings for launched processes.
-slot-list, --slot-list <slots>
List of processor IDs to be used for binding MPI processes. The
specified bindings will be applied to all MPI processes. See
explanation below for syntax.
For rankfiles:
-rf, --rankfile <rankfile>
Provide a rankfile file.
To manage standard I/O:
-output-filename, --output-filename <filename>
Redirect the stdout, stderr, and stddiag of all ranks to a rank-
unique version of the specified filename. Any directories in the
filename will automatically be created. Each output file will
consist of filename.rank, where the rank will be left-filled
with zero's for correct ordering in listings.
-stdin, --stdin <rank>
The MPI rank that is to receive stdin. The default is to forward
stdin to rank=0, but this option can be used to forward stdin to
any rank. It is also acceptable to specify none, indicating that
no ranks are to receive stdin.
-tag-output, --tag-output
Tag each line of output to stdout, stderr, and stddiag with
mat.
-xterm, --xterm <ranks>
Display the specified ranks in separate xterm windows. The ranks
are specified as a comma-separated list of ranges, with a -1
indicating all. A separate window will be created for each spec-
ified rank. Note: In some environments, xterm may require that
the executable be in the user's path, or be specified in abso-
lute or relative terms. Thus, it may be necessary to specify a
local executable as "./foo" instead of just "foo". If xterm
fails to find the executable, mpirun will hang, but still
respond correctly to a ctrl-c. If this happens, please check
that the executable is being specified correctly and try again.
To manage files and runtime environment:
-path, --path <path>
<path> that will be used when attempting to locate the requested
executables. This is used prior to using the local PATH set-
ting.
--prefix <dir>
Prefix directory that will be used to set the PATH and
LD_LIBRARY_PATH on the remote node before invoking Open MPI or
the target process. See the "Remote Execution" section, below.
--preload-binary
Copy the specified executable(s) to remote machines prior to
starting remote processes. The executables will be copied to the
Open MPI session directory and will be deleted upon completion
of the job.
--preload-files <files>
Preload the comma separated list of files to the current working
directory of the remote machines where processes will be
launched prior to starting those processes.
--preload-files-dest-dir <path>
The destination directory to be used for preload-files, if other
than the current working directory. By default, the absolute and
relative paths provided by --preload-files are used.
--tmpdir <dir>
Set the root for the session directory tree for mpirun only.
-wd <dir>
Synonym for -wdir.
-wdir <dir>
Change to the directory <dir> before the user's program exe-
cutes. See the "Current Working Directory" section for notes on
relative paths. Note: If the -wdir option appears both on the
command line and in an application context, the context will
take precedence over the command line.
-x <env>
Export the specified environment variables to the remote nodes
before executing the program. Only one environment variable can
define) them.
Setting MCA parameters:
-gmca, --gmca <key> <value>
Pass global MCA parameters that are applicable to all contexts.
<key> is the parameter name; <value> is the parameter value.
-mca, --mca <key> <value>
Send arguments to various MCA modules. See the "MCA" section,
below.
For debugging:
-debug, --debug
Invoke the user-level debugger indicated by the
orte_base_user_debugger MCA parameter.
-debugger, --debugger
Sequence of debuggers to search for when --debug is used (i.e.
a synonym for orte_base_user_debugger MCA parameter).
-tv, --tv
Launch processes under the TotalView debugger. Deprecated back-
wards compatibility flag. Synonym for --debug.
There are also other options:
-aborted, --aborted <#>
Set the maximum number of aborted processes to display.
--app <appfile>
Provide an appfile, ignoring all other command line options.
-cf, --cartofile <cartofile>
Provide a cartography file.
--hetero
Indicates that multiple app_contexts are being provided that are
a mix of 32/64-bit binaries.
-leave-session-attached, --leave-session-attached
Do not detach OmpiRTE daemons used by this application. This
allows error messages from the daemons as well as the underlying
environment (e.g., when failing to launch a daemon) to be out-
put.
-ompi-server, --ompi-server <uri or file>
Specify the URI of the Open MPI server, or the name of the file
(specified as file:filename) that contains that info. The Open
MPI server is used to support multi-application data exchange
via the MPI-2 MPI_Publish_name and MPI_Lookup_name functions.
-wait-for-server, --wait-for-server
Pause mpirun before launching the job until ompi-server is
detected. This is useful in scripts where ompi-server may be
started in the background, followed immediately by an mpirun
command that wishes to connect to it. Mpirun will pause until
useful to most ORTE and/or MPI users:
-d, --debug-devel
Enable debugging of the OmpiRTE (the run-time layer in Open
MPI). This is not generally useful for most users.
--debug-daemons
Enable debugging of any OmpiRTE daemons used by this applica-
tion.
--debug-daemons-file
Enable debugging of any OmpiRTE daemons used by this applica-
tion, storing output in files.
-launch-agent, --launch-agent
Name of the executable that is to be used to start processes on
the remote nodes. The default is "orted". This option can be
used to test new daemon concepts, or to pass options back to the
daemons without having mpirun itself see them. For example,
specifying a launch agent of orted -mca odls_base_verbose 5
allows the developer to ask the orted for debugging output with-
out clutter from mpirun itself.
--noprefix
Disable the automatic --prefix behavior
There may be other options listed with mpirun --help.
DESCRIPTION
One invocation of mpirun starts an MPI application running under Open
MPI. If the application is single process multiple data (SPMD), the
application can be specified on the mpirun command line.
If the application is multiple instruction multiple data (MIMD), com-
prising of multiple programs, the set of programs and argument can be
specified in one of two ways: Extended Command Line Arguments, and
Application Context.
An application context describes the MIMD program set including all
arguments in a separate file. This file essentially contains multiple
mpirun command lines, less the command name itself. The ability to
specify different options for different instantiations of a program is
another reason to use an application context.
Extended command line arguments allow for the description of the appli-
cation layout on the command line using colons (:) to separate the
specification of programs and arguments. Some options are globally set
across all specified programs (e.g. --hostfile), while others are spe-
cific to a single program (e.g. -np).
Specifying Host Nodes
Host nodes can be identified on the mpirun command line with the -host
option or in a hostfile.
For example,
mpirun -H aa,aa,bb ./a.out
launches two processes on node aa and one on bb.
Here, we list both the host names (aa, bb, and cc) but also how many
"slots" there are for each. Slots indicate how many processes can
potentially execute on a node. For best performance, the number of
slots may be chosen to be the number of cores on the node or the number
of processor sockets. If the hostfile does not provide slots informa-
tion, a default of 1 is assumed. When running under resource managers
(e.g., SLURM, Torque, etc.), Open MPI will obtain both the hostnames
and the number of slots directly from the resource manger.
mpirun -hostfile myhostfile ./a.out
will launch two processes on each of the three nodes.
mpirun -hostfile myhostfile -host aa ./a.out
will launch two processes, both on node aa.
mpirun -hostfile myhostfile -host dd ./a.out
will find no hosts to run on and abort with an error. That is, the
specified host dd is not in the specified hostfile.
Specifying Number of Processes
As we have just seen, the number of processes to run can be set using
the hostfile. Other mechanisms exist.
The number of processes launched can be specified as a multiple of the
number of nodes or processor sockets available. For example,
mpirun -H aa,bb -npersocket 2 ./a.out
launches processes 0-3 on node aa and process 4-7 on node bb, where
aa and bb are both dual-socket nodes. The -npersocket option also
turns on the -bind-to-socket option, which is discussed in a later
section.
mpirun -H aa,bb -npernode 2 ./a.out
launches processes 0-1 on node aa and processes 2-3 on node bb.
mpirun -H aa,bb -npernode 1 ./a.out
launches one process per host node.
mpirun -H aa,bb -pernode ./a.out
is the same as -npernode 1.
Another alternative is to specify the number of processes with the -np
option. Consider now the hostfile
% cat myhostfile
aa slots=4
bb slots=4
cc slots=4
Now,
mpirun -hostfile myhostfile -np 6 ./a.out
will launch ranks 0-3 on node aa and ranks 4-5 on node bb. The
remaining slots in the hostfile will not be used since the -np
option indicated that only 6 processes should be launched.
mpirun 0 1 2 3 4 5
mpirun -loadbalance 0 1 2 3 4 5
mpirun -bynode 0 3 1 4 2 5
mpirun -nolocal 0 1 2 3 4 5
The -loadbalance option tries to spread processes out fairly among the
nodes.
The -bynode option does likewise but numbers the processes in "by node"
in a round-robin fashion.
The -nolocal option prevents any processes from being mapped onto the
local host (in this case node aa). While mpirun typically consumes few
system resources, -nolocal can be helpful for launching very large jobs
where mpirun may actually need to use noticable amounts of memory
and/or processing time.
Just as -np can specify fewer processes than there are slots, it can
also oversubscribe the slots. For example, with the same hostfile:
mpirun -hostfile myhostfile -np 14 ./a.out
will launch processes 0-3 on node aa, 4-7 on bb, and 8-11 on cc.
It will then add the remaining two processes to whichever nodes it
chooses.
One can also specify limits to oversubscription. For example, with the
same hostfile:
mpirun -hostfile myhostfile -np 14 -nooversubscribe ./a.out
will produce an error since -nooversubscribe prevents oversubscrip-
tion.
Limits to oversubscription can also be specified in the hostfile
itself:
% cat myhostfile
aa slots=4 max_slots=4
bb max_slots=4
cc slots=4
The max_slots field specifies such a limit. When it does, the slots
value defaults to the limit. Now:
mpirun -hostfile myhostfile -np 14 ./a.out
causes the first 12 processes to be launched as before, but the
remaining two processes will be forced onto node cc. The other two
nodes are protected by the hostfile against oversubscription by
this job.
Using the --nooversubscribe option can be helpful since Open MPI cur-
rently does not get "max_slots" values from the resource manager.
Of course, -np can also be used with the -H or -host option. For exam-
ple,
will launch process 0 running hostname on node aa and processes 1
and 2 each running uptime on nodes bb and cc, respectively.
Process Binding
Processes may be bound to specific resources on a node. This can
improve performance if the operating system is placing processes subop-
timally. For example, it might oversubscribe some multi-core processor
sockets, leaving other sockets idle; this can lead processes to con-
tend unnecessarily for common resources. Or, it might spread processes
out too widely; this can be suboptimal if application performance is
sensitive to interprocess communication costs. Binding can also keep
the operating system from migrating processes excessively, regardless
of how optimally those processes were placed to begin with.
To bind processes, one must first associate them with the resources on
which they should run. For example, the -bycore option associates the
processes on a node with successive cores. Or, -bysocket associates
the processes with successive processor sockets, cycling through the
sockets in a round-robin fashion if necessary. And -cpus-per-proc
indicates how many cores to bind per process.
But, such association is meaningless unless the processes are actually
bound to those resources. The binding option specifies the granularity
of binding -- say, with -bind-to-core or -bind-to-socket. One can also
turn binding off with -bind-to-none, which is typically the default.
Finally, -report-bindings can be used to report bindings.
As an example, consider a node with two processor sockets, each com-
prising four cores. We run mpirun with -np 4 -report-bindings and the
following additional options:
% mpirun ... -bycore -bind-to-core
[...] ... binding child [...,0] to cpus 0001
[...] ... binding child [...,1] to cpus 0002
[...] ... binding child [...,2] to cpus 0004
[...] ... binding child [...,3] to cpus 0008
% mpirun ... -bysocket -bind-to-socket
[...] ... binding child [...,0] to socket 0 cpus 000f
[...] ... binding child [...,1] to socket 1 cpus 00f0
[...] ... binding child [...,2] to socket 0 cpus 000f
[...] ... binding child [...,3] to socket 1 cpus 00f0
% mpirun ... -cpus-per-proc 2 -bind-to-core
[...] ... binding child [...,0] to cpus 0003
[...] ... binding child [...,1] to cpus 000c
[...] ... binding child [...,2] to cpus 0030
[...] ... binding child [...,3] to cpus 00c0
% mpirun ... -bind-to-none
Here, -report-bindings shows the binding of each process as a mask. In
the first case, the processes bind to successive cores as indicated by
the masks 0001, 0002, 0004, and 0008. In the second case, processes
bind to all cores on successive sockets as indicated by the masks 000f
and 00f0. The processes cycle through the processor sockets in a
round-robin fashion as many times as are needed. In the third case,
less convenient than that of mpirun options. On the other hand, MCA
parameters can be set not only on the mpirun command line, but alterna-
tively in a system or user mca-params.conf file or as environment vari-
ables, as described in the MCA section below. The correspondences are:
mpirun option MCA parameter key value
-bycore rmaps_base_schedule_policy core
-bysocket rmaps_base_schedule_policy socket
-bind-to-core orte_process_binding core
-bind-to-socket orte_process_binding socket
-bind-to-none orte_process_binding none
The orte_process_binding value can also take on the :if-avail
attribute. This attribute means that processes will be bound only if
this is supported on the underlying operating system. Without the
attribute, if there is no such support, the binding request results in
an error. For example, you could have
% cat $HOME/.openmpi/mca-params.conf
rmaps_base_schedule_policy = socket
orte_process_binding = socket:if-avail
Rankfiles
Rankfiles provide a means for specifying detailed information about how
process ranks should be mapped to nodes and how they should be bound.
Consider the following:
cat myrankfile
rank 0=aa slot=1:0-2
rank 1=bb slot=0:0,1
rank 2=cc slot=1-2
mpirun -H aa,bb,cc,dd -rf myrankfile ./a.out So that
Rank 0 runs on node aa, bound to socket 1, cores 0-2.
Rank 1 runs on node bb, bound to socket 0, cores 0 and 1.
Rank 2 runs on node cc, bound to cores 1 and 2.
Application Context or Executable Program?
To distinguish the two different forms, mpirun looks on the command
line for --app option. If it is specified, then the file named on the
command line is assumed to be an application context. If it is not
specified, then the file is assumed to be an executable program.
Locating Files
If no relative or absolute path is specified for a file, Open MPI will
first look for files by searching the directories specified by the
--path option. If there is no --path option set or if the file is not
found at the --path location, then Open MPI will search the user's PATH
environment variable as defined on the source node(s).
If a relative directory is specified, it must be relative to the ini-
tial working directory determined by the specific starter used. For
example when using the rsh or ssh starters, the initial directory is
$HOME by default. Other starters may set the initial directory to the
current working directory from the invocation of mpirun.
Current Working Directory
If the -wdir option is specified, Open MPI will attempt to change to
the specified directory on all of the remote nodes. If this fails,
mpirun will abort.
If the -wdir option is not specified, Open MPI will send the directory
name where mpirun was invoked to each of the remote nodes. The remote
nodes will try to change to that directory. If they are unable (e.g.,
if the directory does not exit on that node), then Open MPI will use
the default directory determined by the starter.
All directory changing occurs before the user's program is invoked; it
does not wait until MPI_INIT is called.
Standard I/O
Open MPI directs UNIX standard input to /dev/null on all processes
except the MPI_COMM_WORLD rank 0 process. The MPI_COMM_WORLD rank 0
process inherits standard input from mpirun. Note: The node that
invoked mpirun need not be the same as the node where the
MPI_COMM_WORLD rank 0 process resides. Open MPI handles the redirection
of mpirun's standard input to the rank 0 process.
Open MPI directs UNIX standard output and error from remote nodes to
the node that invoked mpirun and prints it on the standard output/error
of mpirun. Local processes inherit the standard output/error of mpirun
and transfer to it directly.
Thus it is possible to redirect standard I/O for Open MPI applications
by using the typical shell redirection procedure on mpirun.
% mpirun -np 2 my_app < my_input > my_output
Note that in this example only the MPI_COMM_WORLD rank 0 process will
receive the stream from my_input on stdin. The stdin on all the other
nodes will be tied to /dev/null. However, the stdout from all nodes
will be collected into the my_output file.
Signal Propagation
When orterun receives a SIGTERM and SIGINT, it will attempt to kill the
entire job by sending all processes in the job a SIGTERM, waiting a
small number of seconds, then sending all processes in the job a
SIGKILL.
SIGUSR1 and SIGUSR2 signals received by orterun are propagated to all
processes in the job.
One can turn on forwarding of SIGSTOP and SIGCONT to the program exe-
cuted by mpirun by setting the MCA parameter orte_forward_job_control
to 1. A SIGTSTOP signal to mpirun will then cause a SIGSTOP signal to
be sent to all of the programs started by mpirun and likewise a SIGCONT
signal to mpirun will cause a SIGCONT sent.
Other signals are not currently propagated by orterun.
Process Termination / Signal Handling
During the run of an MPI application, if any rank dies abnormally
(either exiting before invoking MPI_FINALIZE, or dying as the result of
a signal), mpirun will print out an error message and kill the rest of
the MPI application.
nal, it is probably not necessary (and safest) for the user to only
clean up non-MPI state.
Process Environment
Processes in the MPI application inherit their environment from the
Open RTE daemon upon the node on which they are running. The environ-
ment is typically inherited from the user's shell. On remote nodes,
the exact environment is determined by the boot MCA module used. The
rsh launch module, for example, uses either rsh/ssh to launch the Open
RTE daemon on remote nodes, and typically executes one or more of the
user's shell-setup files before launching the Open RTE daemon. When
running dynamically linked applications which require the
LD_LIBRARY_PATH environment variable to be set, care must be taken to
ensure that it is correctly set when booting Open MPI.
See the "Remote Execution" section for more details.
Remote Execution
Open MPI requires that the PATH environment variable be set to find
executables on remote nodes (this is typically only necessary in rsh-
or ssh-based environments -- batch/scheduled environments typically
copy the current environment to the execution of remote jobs, so if the
current environment has PATH and/or LD_LIBRARY_PATH set properly, the
remote nodes will also have it set properly). If Open MPI was compiled
with shared library support, it may also be necessary to have the
LD_LIBRARY_PATH environment variable set on remote nodes as well (espe-
cially to find the shared libraries required to run user MPI applica-
tions).
However, it is not always desirable or possible to edit shell startup
files to set PATH and/or LD_LIBRARY_PATH. The --prefix option is pro-
vided for some simple configurations where this is not possible.
The --prefix option takes a single argument: the base directory on the
remote node where Open MPI is installed. Open MPI will use this direc-
tory to set the remote PATH and LD_LIBRARY_PATH before executing any
Open MPI or user applications. This allows running Open MPI jobs with-
out having pre-configured the PATH and LD_LIBRARY_PATH on the remote
nodes.
Open MPI adds the basename of the current node's "bindir" (the direc-
tory where Open MPI's executables are installed) to the prefix and uses
that to set the PATH on the remote node. Similarly, Open MPI adds the
basename of the current node's "libdir" (the directory where Open MPI's
libraries are installed) to the prefix and uses that to set the
LD_LIBRARY_PATH on the remote node. For example:
Local bindir: /local/node/directory/bin
Local libdir: /local/node/directory/lib64
If the following command line is used:
% mpirun --prefix /remote/node/directory
Open MPI will add "/remote/node/directory/bin" to the PATH and
"/remote/node/directory/lib64" to the D_LIBRARY_PATH on the remote node
before attempting to execute anything.
mon prefix.
Note that executing mpirun via an absolute pathname is equivalent to
specifying --prefix without the last subdirectory in the absolute path-
name to mpirun. For example:
% /usr/local/bin/mpirun ...
is equivalent to
% mpirun --prefix /usr/local
Exported Environment Variables
All environment variables that are named in the form OMPI_* will auto-
matically be exported to new processes on the local and remote nodes.
The -x option to mpirun can be used to export specific environment
variables to the new processes. While the syntax of the -x option
allows the definition of new variables, note that the parser for this
option is currently not very sophisticated - it does not even under-
stand quoted values. Users are advised to set variables in the envi-
ronment and use -x to export them; not to define them.
Setting MCA Parameters
The -mca switch allows the passing of parameters to various MCA (Modu-
lar Component Architecture) modules. MCA modules have direct impact on
MPI programs because they allow tunable parameters to be set at run
time (such as which BTL communication device driver to use, what param-
eters to pass to that BTL, etc.).
The -mca switch takes two arguments: <key> and <value>. The <key>
argument generally specifies which MCA module will receive the value.
For example, the <key> "btl" is used to select which BTL to be used for
transporting MPI messages. The <value> argument is the value that is
passed. For example:
mpirun -mca btl tcp,self -np 1 foo
Tells Open MPI to use the "tcp" and "self" BTLs, and to run a sin-
gle copy of "foo" an allocated node.
mpirun -mca btl self -np 1 foo
Tells Open MPI to use the "self" BTL, and to run a single copy of
"foo" an allocated node.
The -mca switch can be used multiple times to specify different <key>
and/or <value> arguments. If the same <key> is specified more than
once, the <value>s are concatenated with a comma (",") separating them.
Note that the -mca switch is simply a shortcut for setting environment
variables. The same effect may be accomplished by setting correspond-
ing environment variables before running mpirun. The form of the envi-
ronment variables that Open MPI sets is:
OMPI_MCA_<key>=<value>
Thus, the -mca switch overrides any previously set environment vari-
ables. The -mca settings similarly override MCA parameters set in the
$OPAL_PREFIX/etc/openmpi-mca-params.conf or $HOME/.openmpi/mca-
params.conf file.
ompi_info command. See the ompi_info(1) man page for detailed informa-
tion on the command.
EXAMPLES
Be sure also to see the examples throughout the sections above.
mpirun -np 4 -mca btl ib,tcp,self prog1
Run 4 copies of prog1 using the "ib", "tcp", and "self" BTL's for
the transport of MPI messages.
mpirun -np 4 -mca btl tcp,sm,self
--mca btl_tcp_if_include ce0 prog1
Run 4 copies of prog1 using the "tcp", "sm" and "self" BTLs for the
transport of MPI messages, with TCP using only the ce0 interface to
communicate. Note that other BTLs have similar if_include MCA
parameters.
RETURN VALUE
mpirun returns 0 if all ranks started by mpirun exit after calling
MPI_FINALIZE. A non-zero value is returned if an internal error
occurred in mpirun, or one or more ranks exited before calling
MPI_FINALIZE. If an internal error occurred in mpirun, the correspond-
ing error code is returned. In the event that one or more ranks exit
before calling MPI_FINALIZE, the return value of the rank of the
process that mpirun first notices died before calling MPI_FINALIZE will
be returned. Note that, in general, this will be the first rank that
died but is not guaranteed to be so.
1.3.4 Nov 11, 2009 MPIRUN(1)
« Return to documentation listing
|