« Return to documentation listing
NAME
MPI_Gatherv - Gathers varying amounts of data from all processes to the
root process
SYNTAX
C Syntax
#include <mpi.h>
int MPI_Gatherv(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int *recvcounts, int *displs, MPI_Datatype recvtype,
int root, MPI_Comm comm)
Fortran Syntax
INCLUDE 'mpif.h'
MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
DISPLS, RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)
INTEGER RECVTYPE, ROOT, COMM, IERROR
C++ Syntax
#include <mpi.h>
void MPI::Comm::Gatherv(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatype& recvtype, int root) const = 0
INPUT PARAMETERS
sendbuf Starting address of send buffer (choice).
sendcount Number of elements in send buffer (integer).
sendtype Datatype of send buffer elements (handle).
recvcounts
Integer array (of length group size) containing the number of
elements that are received from each process (significant
only at root).
displs Integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the incom-
ing data from process i (significant only at root).
recvtype Datatype of recv buffer elements (significant only at root)
(handle).
root Rank of receiving process (integer).
comm Communicator (handle).
OUTPUT PARAMETERS
recvbuf Address of receive buffer (choice, significant only at root).
IERROR Fortran only: Error status (integer).
The outcome is as if each process, including the root process, sends a
message to the root,
MPI_Send(sendbuf, sendcount, sendtype, root, ...)
and the root executes n receives,
MPI_Recv(recvbuf + disp[i] * extent(recvtype), \
recvcounts[i], recvtype, i, ...)
Messages are placed in the receive buffer of the root process in rank
order, that is, the data sent from process j is placed in the jth por-
tion of the receive buffer recvbuf on process root. The jth portion of
recvbuf begins at offset displs[j] elements (in terms of recvtype) into
recvbuf.
The receive buffer is ignored for all nonroot processes.
The type signature implied by sendcount, sendtype on process i must be
equal to the type signature implied by recvcounts[i], recvtype at the
root. This implies that the amount of data sent must be equal to the
amount of data received, pairwise between each process and the root.
Distinct type maps between sender and receiver are still allowed, as
illustrated in Example 2, below.
All arguments to the function are significant on process root, while on
other processes, only arguments sendbuf, sendcount, sendtype, root,
comm are significant. The arguments root and comm must have identical
values on all processes.
The specification of counts, types, and displacements should not cause
any location on the root to be written more than once. Such a call is
erroneous.
Example 1: Now have each process send 100 ints to root, but place each
set (of 100) stride ints apart at receiving end. Use MPI_Gatherv and
the displs argument to achieve this effect. Assume stride >= 100.
MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf, stride;
int *displs,i,*rcounts;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100;
}
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts,
displs, MPI_INT, root, comm);
Note that the program is erroneous if stride < 100.
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100;
}
/* Create datatype for 1 column of array
*/
MPI_Type_vector(100, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
Example 3: Process i sends (100-i) ints from the ith column of a 100 x
150 int array, in C. It is received into a buffer with stride, as in
the previous two examples.
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank;
MPI_Datatype stype;
int *displs,i,*rcounts;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank( comm, &myrank );
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i; /* note change from previous example */
}
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
/* sptr is the address of start of "myrank" column
*/
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);
Note that a different amount of data is received from each process.
Example 4: Same as Example 3, but done in a different way at the send-
ing end. We create a datatype that causes the correct striding at the
sending end so that we read a column of a C array.
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, stride, myrank, disp[2], blocklen[2];
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i;
}
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 100-myrank, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
Example 5: Same as Example 3 at sending side, but at receiving side we
make the stride between received blocks vary from block to block.
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, *stride, myrank, bufsize;
MPI_Datatype stype;
int *displs,i,*rcounts,offset;
...
MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
stride = (int *)malloc(gsize*sizeof(int));
...
/* stride[i] for i = 0 to gsize-1 is set somehow
*/
/* set up displs and rcounts vectors first
*/
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {
displs[i] = offset;
offset += stride[i];
rcounts[i] = 100-i;
}
/* the required buffer size for rbuf is now easily obtained
*/
bufsize = displs[gsize-1]+rcounts[gsize-1];
rbuf = (int *)malloc(bufsize*sizeof(int));
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
Example 6: Process i sends num ints from the ith column of a 100 x 150
int *displs,i,*rcounts,num;
...
MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
/* First, gather nums to root
*/
rcounts = (int *)malloc(gsize*sizeof(int));
MPI_Gather( &num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
/* root now has correct rcounts, using these we set
* displs[] so that data is placed contiguously (or
* concatenated) at receive end
*/
displs = (int *)malloc(gsize*sizeof(int));
displs[0] = 0;
for (i=1; i<gsize; ++i) {
displs[i] = displs[i-1]+rcounts[i-1];
}
/* And, create receive buffer
*/
rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])
*sizeof(int));
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] = 150*sizeof(int);
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit( &stype );
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, num, stype, rbuf, rcounts,
displs, MPI_INT, root, comm);
USE OF IN-PLACE OPTION
The in-place option operates in the same way as it does for MPI_Gather.
When the communicator is an intracommunicator, you can perform a gather
operation in-place (the output buffer is used as the input buffer).
Use the variable MPI_IN_PLACE as the value of the root process sendbuf.
In this case, sendcount and sendtype are ignored, and the contribution
of the root process to the gathered vector is assumed to already be in
the correct place in the receive buffer.
Note that MPI_IN_PLACE is a special kind of value; it has the same
restrictions on its use as MPI_BOTTOM.
Because the in-place option converts the receive buffer into a send-
and-receive buffer, a Fortran binding that includes INTENT must mark
these as INOUT, not OUT.
WHEN COMMUNICATOR IS AN INTER-COMMUNICATOR
When the communicator is an inter-communicator, the root process in the
first group gathers data from all the processes in the second group.
The first group defines the root process. That process uses MPI_ROOT
as the value of its root argument. The remaining processes use
MPI_PROC_NULL as the value of their root argument. All processes in
Almost all MPI routines return an error value; C routines as the value
of the function and Fortran routines in the last argument. C++ func-
tions do not return errors. If the default error handler is set to
MPI::ERRORS_THROW_EXCEPTIONS, then on error the C++ exception mechanism
will be used to throw an MPI:Exception object.
Before the error value is returned, the current MPI error handler is
called. By default, this error handler aborts the MPI job, except for
I/O function errors. The error handler may be changed with
MPI_Comm_set_errhandler; the predefined error handler MPI_ERRORS_RETURN
may be used to cause error values to be returned. Note that MPI does
not guarantee that an MPI program can continue past an error.
SEE ALSO
MPI_Gather
MPI_Scatter
MPI_Scatterv
1.3.4 Nov 11, 2009 MPI_Gatherv(3)
« Return to documentation listing
|