
Investigations on InfiniBand: Efficient Network
Buffer Utilization at Scale

Galen M. Shipman1, Ron Brightwell2, Brian Barrett1, Jeffrey M. Squyres3, and
Gil Bloch4

1 Los Alamos National Laboratory ?, Los Alamos, NM USA,
{gshipman,bbarrett}@lanl.gov,

LA-UR-07-3198,
2 Sandia National Laboratories ??, Albuquerque, NM USA,

rbbrigh@sandia.gov
3 Cisco, Inc., San Jose, CA USA,

jsquyres@cisco.com
4 Mellanox Technologies, Tel Aviv, Israel,

gil@mellanox.il

Abstract. The default messaging model for the OpenFabrics “Verbs”
API is to consume receive buffers in order—regardless of the actual in-
coming message size—leading to inefficient registered memory usage. For
example, many small messages can consume large amounts of registered
memory. This paper introduces a new transport protocol in Open MPI
implemented using the existing OpenFabrics Verbs API that exhibits effi-
cient registered memory utilization. Several real-world applications were
run at scale with the new protocol; results show that global network re-
source utilization efficiency increases, allowing increased scalability—and
larger problem sizes—on clusters which can increase application perfor-
mance in some cases.

1 Introduction
The recent emergence of near-commodity clusters with thousands of nodes con-
nected with InfiniBand (IB) has increased the need for examining scalability
issues with MPI implementations for IB. Several of these issues were originally
discussed in detail for the predecessor to IB [1], and several possible approaches
to overcoming some of the more obvious scalability limitations were proposed.
This study examines the scalability, performance, and complexity issues of the
message buffering for implementations of MPI over IB.

The semantics of IB Verbs place a number of constraints on receive buffers.
Receive buffers are consumed in FIFO order, and the buffer at the head of
? Los Alamos National Laboratory is operated by Los Alamos National Security, LLC,

for the National Nuclear Security Administration of the U.S. Department of Energy
under contract DE-AC52-06NA25396.

?? Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

the queue must be large enough to hold the next incoming message. If there is
no receive buffer at the head of the queue or if the receive buffer is not large
enough, this will trigger a network-level protocol that can significantly degrade
communication performance. Because of these constraints, MPI implementations
must be careful to insure that a sufficient number of receive buffers of sufficient
size are always available to match incoming messages.

Several other details can complicate the issue. Most operating systems require
message buffers to be registered so that they may be mapped to physical pages.
Since this operation is time consuming, it is desirable to register memory only
when absolutely needed and to use registered memory as efficiently as possible.
MPI implementations that are single-threaded may only be able to replenish
message buffers when the application makes an MPI library call. Finally, the use
of receive buffers is highly dependent on application message passing patterns.

This paper describes a new protocol that is more efficient at using receive
buffers and can potentially avoid some of the flow control protocols that are
needed to insure that receive buffers of the appropriate size are always avail-
able. We begin by measuring the efficiency of receive buffer utilization for the
current Open MPI implementation for IB. We then propose a new strategy that
can significantly increase the efficiency of receive buffer utilization, make more
efficient use of registered memory, and potentially reduce the need for MPI-level
flow control messages.

The rest of this paper is organized as follows. The next section provides a brief
discussion of previous work in this area. Section 3 describes the new protocol,
while Section 4 provides details of the test platform and analyzes results for
several application benchmarks and applications. We conclude in Section 5 with
a summary of relevant results and offer some possible avenues of future work in
Section 5.1.

2 Background

The complexity of managing multiple sets of buffers across multiple connections
was discussed in [1], and a mechanism for sharing a single pool of buffers across
multiple connections was proposed. In the absence of such a shared buffer pool for
IB, MPI implementations were left to develop user-level flow control strategies
to insure that message buffer space was not exhausted [2].

Eventually, a shared buffer pool mechanism was implemented for IB in the
form of a shared receive queue (SRQ), and has been shown to be effective in
reducing memory usage [3, 4]. However, the IB SRQ still does not eliminate
the need for user-level and network-level flow control that is required to insure
that the shared buffer pool is not depleted [5]. The shared buffer pool approach
was also implemented for MPI on the Portals data movement layer, but using
fixed sized buffers was shown to have poor memory efficiency in practice, so an
alternative strategy was developed [6]. In Section 3, we propose a similar strategy
that can be used to improve memory efficiency for MPI over IB as well.

3 Protocol Description
IB does not natively support receive buffer pools similar to [6], but it is possible
to emulate the behavior with buckets of receive buffers of different sizes, with
each bucket using a single shared receive queue (SRQ). We call this emulation
the “Bucket SRQ,” or B-SRQ.

B-SRQ begins by allocating a set of per-peer receive buffers. These per-peer
buffers are for “tiny” messages (128 bytes plus space for header information)
and are regulated by a simple flow control protocol to ensure that tiny messages
always have a receive buffer available.5 The “tiny” size of 128 bytes was choosen
as an optimization to ensure that global operations on a single MPI DOUBLE ele-
ment would always fall into the per-peer buffer path. The 128-byte packet size
also ensures that other control messages (such as rendezvous protocol acknowl-
edgments) use the per-peer allocated resources path as well.

B-SRQ then allocates a large “slab” of registered memory for receive buffers.
The slab is divided up into N buckets; bucket Bi is Si bytes long and contains
a set of individual receive buffers, each of size Ri bytes (where Ri 6= Rj for
i, j ∈ [0, N − 1] and i 6= j). Bucket Bn contains Sn

Rn
buffers. Each bucket is

associated with a unique queue pair (QP) and a unique SRQ. This design point is
a result of current IB network adapter limitations; only a single receive queue can
be associated with a QP. The QP effectively acts as the sender-side addressing
mechanism of the corresponding SRQ bucket on the receiver.6 Other networks
such as Myrinet GM [7] allow the sender to specify a particular receive buffer
on the send side through a single logical connection and as such would allow for
a similar protocol as that used in B-SRQ. Quadrics Elan [8] uses multiple pools
of buffers to handle unexpected messages, although the specific details of this
protocol have never been published.

In our prototype implementation, Si = Sj for i 6= j, and Ri = 28+i, for
i ∈ [0, 7]. That is, the slab was divided equally between eight buckets, and
individual receive buffers were powers of two sizes ranging from 28 to 215. Fig. 1
illustrates the receive buffer allocation strategy.

Send buffers are allocated using a similar technique, except that free lists are
used which grow on demand (up to a configurable limit). When a MPI message
is scheduled for delivery, a send buffer is dequeued from the free list; the smallest
available send buffer that is large enough to hold the message is returned.

4 Results
Two protocols are analyzed and compared: Open MPI v1.2’s default protocol
for short messages and Open MPI v1.2’s default protocol modified to use B-SRQ
for short messages (denoted “v1.2bsrq”).

5 The flow control protocol, while outside the scope of this paper, ensures that the
receiver never issues a “receiver not ready” (or RNR-NAK) error, which can degrade
application performance.

6 Open MPI uses different protocols for long messages. Therefore, the maximum B-
SRQ bucket size is effectively the largest “short” message that Open MPI will handle.

256B
256B

256B
256B

256B

512B
512B

512B
512B

512B

1KB
1KB

1KB
1KB

1KB

2 KB
2 KB

2 KB
2 KB

2 KB

4 KB
4 KB

4 KB
4 KB

4 KB

8 KB
8 KB

8 KB
8 KB

8 KB

16 KB
16 KB

16 KB
16 KB

16 KB

32 KB
32 KB

32 KB
32 KB

32 KB

SRQ Slab Size
= Total SRQ Resources

SRQ Bucket Size =
Total SRQ Resource / # Buckets

of Receive Descriptors =
SRQ Bucket Size / RD Size

Shared Receive Resources
Fixed regardless of # of peersPer Peer Receive Resources

128B
128B

128B
128B

128B
128B

128B
128B

128B
128B

128B
128B

128B
128B

128B

128B
128B

128B
128B

128B

Fig. 1. Open MPI’s B-SRQ receive resources.

The default protocol for short messages in Open MPI v1.2 uses a credit-based
flow-control algorithm to send messages to fixed-sized buffers on the receiver.
When the sender exhausts its credits, messages are queued until the receiver
returns credits (via an ACK message) to the sender. The sender is then free
to resume sending. By default, SRQ is not used in Open MPI v1.2 because of
a slight latency performance penalty; SRQ may be more efficient in terms of
resource utilization, but it can be slightly slower than normal receive queues in
some network adapters [3, 4].

Open MPI v1.2bsrq implements the protocol described in Section 3. It has
the following advantages over Open MPI v1.2’s default protocol:

– Receiver buffer utilization is more efficient.
– More receive buffers can be be posted in the same amount of memory.
– No flow control protocol overhead for messages using the SRQ QPs.7

4.1 Experimental Setup
The Coyote cluster at Los Alamos National Laboratory was used to test the
B-SRQ protocol. Coyote is a 1,290 node AMD Opteron cluster divided into 258-
node sub-clusters. Each sub-cluster is an “island” of IB connectivity; nodes are
fully connected via IB within the sub-cluster but are physically disjoint from
IB in other sub-clusters. Each node has two single-core 2.6 GHz AMD Opteron
processors, 8 GB of RAM, and a single-port Mellanox Sinai/Infinihost III SDR
IB adapter (firmware revision 1.0.800). The largest MPI job that can be run
utilizing the IB network is therefore 516 processors.

Both versions of Open MPI (v1.2 and v1.2bsrq) were used to run the NAS
Parallel Benchmarks (NPBs) and two Los Alamos-developed applications. Wall-
clock execution time was measured to compare overall application performance

7 Without pre-negotiating a fixed number of SRQ receive buffers for each peer, there is
no way for senders to know when receive buffers have been exhausted in an SRQ [3].

SP

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

Pe
rc

en
til

e

InfiniBand Receive Size (Bytes)

BT
CG
MG

 0

Avg Rank Efficiency
Min Rank Efficiency

Max Rank Efficiency

 40%

 80%

 100%

BT B−SRQ

BT Default

CG B−SRQ

CG Default

MG B−SRQ

MG Default

SP B−SRQ

SP Default

R
ec

ei
ve

 B
uf

fe
r

E
ffi

ci
en

cy

 0%

 20%

 60%

(a) (b)

 B−SRQ
 Default

 100

 300

 400

 500

 600

BT CG MG SP

T
im

e
in

 s
ec

on
ds

 0

 200

(c)

Fig. 2. NAS Parallel Benchmark Class D results on 256 nodes for (a) message size, (b)
buffer efficiency, and (c) wall-clock execution time.

with and without B-SRQ. Instrumentation was added to both Open MPI versions
to measure the effectiveness and efficiency of B-SRQ by logging send and receive
buffer utilization, defined as message size

buffer size . Performance results used the non-
instrumented versions.

Buffer utilization of 100% is ideal, meaning that the buffer is exactly the
same size as the data that it contains. Since IB is a resource-constrained network,
the buffer utilization of an application can have a direct impact on its overall
performance. For example, if receive buffer utilization is poor and the incoming
message rate is high, available receive buffers can be exhausted, resulting in an
RNR-NAK (and therefore performance degradation) [3, 4].

The frequency of message sizes received via IB was also recorded. Note that
IB-level message sizes may be different than MPI-level message sizes as Open
MPI may segment an MPI-level message, use RDMA for messages, and send
control messages over IB. This data is presented in percentile graphs, showing
the percentage of receives at or below a given size (in bytes).

4.2 NAS Parallel Benchmarks

Results using D sized problems with the NPBs are shown in Figure 2(a). The
benchmarks utilize a high percentage of small messages at the IB level, with
the notable exception of MG, which uses some medium-sized messages at the
IB level. Some of these benchmarks do send larger messages as well, triggering
a different message passing protocol in Open MPI that utilizes both rendezvous

InfiniBand Receive Size (Bytes)

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

Pe
rc

en
til

e

 0

Min Rank Efficiency

Max Rank Efficiency
Avg Rank Efficiency

 40%

 80%

 100%

NP 16 B_SRQ

NP 16 Deault

NP 64 B−SRQ

NP 64 Default

NP 256 B−SRQ

NP 256 Default

R
ec

ei
ve

 B
uf

fe
r

E
ffi

ci
en

cy

 0%

 20%

 60%

(a) (b)

 B−SRQ
 Default

 10.00

 30.00

 40.00

 50.00

 60.00

16 64 256

T
im

e
in

 s
ec

on
ds

 0.00

 20.00

(c)

Fig. 3. SAGE results for (a) message size at 256 processes, (b) buffer efficiency at
varying process count, and (c) wall-clock execution time at varying process count.

techniques and RDMA [9]. Long messages effectively avoid the use of dedicated
receive buffers delivering data directly into the application’s receive buffer.

Figure 2(b) shows that Open MPI’s v1.2 protocol exhibits poor receive buffer
utilization due to the fact that receive buffers are fixed at 4 KB and 32 KB. These
buffer sizes provide good performance but poor buffer utilization. The B-SRQ
protocol in v1.2bsrq provides good receive buffer utilization for the NPB bench-
marks, with increases in efficiency of over 50% for the MG benchmark. Overall
B-SRQ performance decreases slightly, shown in Figure 2(c); this performance
penalty is currently being investigated in conjunction with several IB vendors.

4.3 Los Alamos Applications

Two Los Alamos National Laboratory applications were used to evaluate B-SRQ.
The first, SAGE, is an adaptive grid Eulerian hydrocode that uses adaptive mesh
refinement. SAGE is typically run on thousands of processors and has weak
scaling characteristics. Message sizes vary, typically in the tens to hundreds of
kilobytes. Figure 3(a) shows that most IB level messages received were less than
128 bytes with larger messages using our RDMA protocol. Figure 3(b) illustrates
poor memory utilization in Open MPI v1.2 when run at 256 processors. The new
protocol exhibits much better receive buffer utilization, as smaller buffers are
used to handle the data received. As with the NPBs, there is a slight performance
impact, but it is very minimal at 256 processors, as illustrated in Figure 3(c).

The second application evaluated was SWEEP. SWEEP uses a pipelined
wavefront communication pattern. Messages are small and communication in

InfiniBand Receive Size (Bytes)

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

Pe
rc

en
til

e

 0

Min Rank Efficiency

Max Rank Efficiency
Avg Rank Efficiency

 40%

 80%

 100%

NP 16 B−SRQ

NP 16 Default

NP 64 B−SRQ

NP 64 Default

NP 256 B−SRQ

NP 256 Default

R
ec

ei
ve

 B
uf

fe
r

E
ffi

ci
en

cy

 0%

 20%

 60%

(a) (b)

 B−SRQ
 Default

 0.20

 0.60

 0.80

 1.00

 1.20

16 64 256

T
im

e
in

 s
ec

on
ds

 0.00

 0.40

(c)

Fig. 4. SWEEP results for (a) message size at 256 processes, (b) buffer efficiency at
varying process count, and (c) wall-clock execution time at varying process count.

the wavefront is limited to spatial neighbors on a cube. The wavefront direction
and starting point is not fixed; it can change during the run to start from any
corner on the cube. Receive buffer size is highly regular as shown in Figure 4(a).
Figure 4(b) shows that receive buffer efficiency is improved by the B-SRQ algo-
rithm, although to a lesser extent than in other applications. Figure 4(c) shows
that performance was dramatically increased by the use of the B-SRQ proto-
col. This performance increase is because the v1.2 protocol incorporates a flow
control mechanism which limits the number of sends that can be outstanding
(controlled by the number of buffers available on the receiver). Receive resources
are allocated per peer, so a relatively small number of receive buffers are avail-
able (defaulting to 8). SWEEP is extremely latency sensitive; this flow control
not only adds overhead, it prevents SWEEP’s high message rate from keeping
the IB network full. Over 90% of SWEEP’s messages are in the message sizes
covered by the B-SRQ protocol; these messages were therefore not rate limited
by a flow control mechanism, resulting in a significant performance increase.

5 Conclusions
Evaluation of application communication over Open MPI revealed that the size of
data received at the IB level, while often quite small, can vary substantially from
application to application. Using a single pool of fixed-sized receive buffers may
therefore result in inefficient receive buffer utilization. Receive buffer depletion
negatively impacts performance, particularly at large scale. Earlier work focused

on complex receiver-side depletion detection and recovery, or avoiding depletion
altogether by tuning receive buffer sizes and counts on a per-application (and
sometimes per-run) basis.

The B-SRQ protocol focuses on avoiding resource depletion by more efficient
receive buffer utilization. Experimental results are promising; by better match-
ing receive buffer sizes with the size of received data, application runs were
constrained to an overall receive buffer memory footprint of less than 25 MB.
Additionally, receive queues were never depleted and no application-specific tun-
ing of receive buffer resources was required.

5.1 Future Work
While the B-SRQ protocol results in better receive buffer utilization, other receive
buffer allocation methods are possible. For example, buffer sizes in increasing
powers of two may not be optimal. Through measurements collected via Open
MPI v1.2bsrq, we will explore receive buffer allocation policies and their potential
impact on overall receive buffer utilization.

Recent announcements by IB vendors indicate that network adapters will
soon support the ability to associate a single QP with multiple SRQs by specify-
ing the SRQ for delivery on the send side. This may have implications on both
performance and QP resource utilization that will need to be studied further.

References
[1] Brightwell, R., Maccabe, A.B.: Scalability limitations of VIA-based technologies

in supporting MPI. In: Proceedings of the Fourth MPI Devlopers’ and Users’
Conference. (2000)

[2] Liu, J., Panda, D.K.: Implementing efficient and scalable flow control schemes in
mpi over infiniband. In: Workshop on Communication Architecture for Clusters
(CAC 04). (2004)

[3] Shipman, G.M., Woodall, T.S., Graham, R.L., Maccabe, A.B., Bridges, P.G.: Infini-
band scalability in Open MPI. In: International Parallel and Distributed Processing
Symposium (IPDPS’06). (2006)

[4] Sur, S., Chai, L., Jin, H.W., Panda, D.K.: Shared receive queue based scalable MPI
design for InfiniBand clusters. In: International Parallel and Distributed Processing
Symposium (IPDPS’06). (2006)

[5] Sur, S., Koop, M.J., Panda, D.K.: High-performance and scalable MPI over In-
finiBand with reduced memory usage: An in-depth performance analysis. In:
ACM/IEEE International Conference on High-Performance Computing, Network-
ing, Storage, and Analysis (SC’06). (2006)

[6] Brightwell, R., Maccabe, A.B., Riesen, R.: Design, implementation, and perfor-
mance of MPI on Portals 3.0. International Journal of High Performance Comput-
ing Applications 17(1) (2003)

[7] Myrinet: Myrinet GM. (http://www.myri.com/scs/documentation.html)
[8] Quadrics: Quadrics elan programming manual v5.2. http://www.quadrics.com/

(2005)
[9] Shipman, G.M., Woodall, T.S., Bosilca, G., Graham, R.L., Maccabe, A.B.: High

performance RDMA protocols in HPC. In: Proceedings, 13th European PVM/MPI
Users’ Group Meeting. Lecture Notes in Computer Science, Bonn, Germany,
Springer-Verlag (2006)

