
Why MPI Makes You Scream!
And How Can We Simplify
Parallel Debugging?

Jayant DeSouza, Intel Corporation
Jeff Squyres, Indiana University

Goals of This BOF

 List what we think are the problems
 And some possible solutions

 Hear what you think are the problems
 Why are they problems for you?
 How do you solve them now?
 …?

 Next steps

Jayant DeSouza

 Senior Software Engineer, Intel
Corporation
 Advanced Computing Center, Tools for

petaflop architectures
 MPI tool implementer

 Intel Message Checker

Errors

Synchronization Mismatch

Call type

Arguments

Length

Deadlock

Data Race

Resource

Allocation

Initialization

Deallocation

Standard

Timing-dependent

Interface

Interprocess

Classification of Errors in MPI

And yet, everyone uses
MPI.

User Survey

State of the Tools Address
 Compile time lint tool for MPI?

 MPI-Check?
 printf/write is a difficult debugging model

 Requires many iterations to narrow down the error
 But:

 available on every system
 real easy to "install", "learn", and get started

 Debuggers
 Commercial ones may cost a lot (home equity loan)
 It's hard to scale debugging and debuggers
 Requires user to do the heavy lifting

State of the Tools Address

 Automated tools can help some
 Umpire, Marmot, MPI-Check, Intel Message

Checker, NEC Collectives, MPICH2 collectives
 Still in infancy, but I believe it’s the way to go

 A combination of tools would be best
 Why do users resist tools?

MPI Implementations

 No general test suite to validate/evaluate
MPI implementations
 Is ping-pong all that matters?

 Why won't users share their bad code?
Hmmm, I wonder

 Should the standard be improved?

Summary

 Productivity is important
 Programming models and tools matter

 Is there a need for more than printf?
 What are the next steps?

Professor, I left the Professor, I left the printf printf in therein there
because it fixed the bug.because it fixed the bug.

Jeff Squyres

 Research associate, Indiana University
 MPI user (years ago)
 MPI implementer

 LAM/MPI
 Open MPI

Jeff’s View: MPI Is Great / Horrible

 MPI does some things really well
 “6 function MPI” (2% of MPI!)
 Simple user models, simple MPI

 MPI does some things really poorly
 Doing complex things can be hard
 Datatypes can be great, but complex to setup
 Some of MPI-2 is… er… complex
 Performance portability can be… a challenge

 MPI implementations are not created equal

Jeff’s View: User Problems
 Startup / compile problems

 “Dot” file issues / authentication
 Mixing compiler suites
 Mixing MPI implementations

 Run-time problems
 Simple message passing issues
 Assuming MPI implementation behavior
 Memory problems (buffer overflow, etc.)
 Heisenbugs

 Law of Least Astonishment

Jeff’s View: User Solutions

 Three kinds of users:
 I’ll do it myself (printf debugging)
 I can figure out the code (debuggers)
 I can refactor the algorithm (tracing/perf. tools)

 The parallel learning curve can be steep
 Many expect it to be identical to serial
 Not enough people use tools

 Not all tools are free
 …but is there something better?

Community’s View

 What about MPI makes you scream?

 How can we simplify parallel debugging?

Conclusions

 We believe (but are biased):
 Use the tools!

 Users need to tell us what you want
 We want to hear the whacky ideas
 Sign up on the sheet to continue this

discussion in e-mail

Resources (Google for These)
 Correctness tools

 Umpire, Marmot, MPI-Check, Intel Message
Checker, NEC Collectives, MPICH2 collectives

 Tracing / performance tools
 Vampir, Intel Trace Analyzer, TAU,

MPE/Jumpshot, XMPI
 Debuggers

 FX2, Totalview, DDT, PGDBG
 Gdb, Valgrind, … other serial debuggers

 …and probably others!

Horror Stories

 What horror stories do you have?
 What took forever to track down?
 How could MPI or a tool helped?

Scalability

 How many people run with:
 4, 8, 16, 32, 64, 256, 512, …more processes

 What problems do you run into with
scalability?
 How can MPI or a tool help?

Multiple MPI Implementations

 How many people use the same
application with different MPI
implementations?
 Do you have specific code paths for specific

implementations? Why?
 Is performance always the most important

thing?
 What other problems have you run into?

How do You Debug?

 How do you debug your parallel
applications?
 printf / trial and error
 Performance / correctness / tracing tools
 Serial debuggers
 Parallel debuggers
 Memory-checking debuggers
 …something else?

Do You Use MPI-2?
 What parts?

 Dynamic processes
 One-sided communication
 MPI_THREAD_MULTIPLE
 Extended collective operations
 External interfaces
 Parallel I/O
 C++ / F90 bindings

 How well supported are these features?
 What is missing from MPI?

Do You Want / Need
Heterogeneous?

 Architecture
 Data size
 Data layout (e.g., endian)
 Processor type / speed
 Multi-process or multi-thread?

 Multiple networks
 Non-uniform networks

