
1

Memory debugging for
MPI-applications in Open MPI

Rainer Keller – HLRS
Shiqing Fan – HLRS

Michael Resch – HLRS

Cisco Booth Talk, SC2008, Austin

Overview
•  Introduction to Open MPI

•  Introduction into Valgrind

•  Memchecker Component for Memory checking in Open MPI

•  Conclusion

2

•  Features of Open MPI:
  Full MPI-2 implementation,
  Fast, reliable and extensible,
  Production-grade code quality

as a base for research.
•  Current status:

  Stable: v1.2.8 (as of October)
  Release v1.3 for SC08

About Open MPI
PACX-MPI

LAM/MPI
LA-MPI

FT-MPI

Open MPI Architecture
•  Very modular architecture allows (holds for OMPI / ORTE / OPAL):

  Dynamically load available modules and check for hardware
  Select best modules and unload others (e.g. if hw not available)
  Fast indirect calls into each component.

MPI-Layer
PML
BML

OpenIB
BTL

Rcache

MPool

Rcache

MPool OpenIB
BTL

MPool SM
BTL

•  Very versatile setup for varying installations (ship one RPM)
•  Allows easy integration of new functionality

3

Introduction into Valgrind
•  An Open-Source Debugging & Profiling tool

•  Works with dynamically & statically linked applications

•  Emulates CPU:
i.e. executes instructions on a synthetic x86/Opteron/Power

•  It‘s easily configurable to ease debugging & profiling through tools:
  Cachegrind: A memory & cache profiler
  Helgrind: Find Races in multithreaded programs
  Callgrind: A Cache & Call-tree profiler
  Memcheck: Every memory access is being checked…

Introduction into Valgrind
•  Memcheck tool scans for:

  Use of uninitialized memory
  Malloc Errors:

•  Usage of free‘d memory
•  Double free
•  Reading/writing past malloc’d memory
•  Lost memory pointers
•  Mismatched malloc/new & free/delete

  Stack write errors
  Overlapping arguments to system functions like memcpy.

•  Why not use this functionality for MPI checking purposes?

4

Open MPI valgrind extension
•  Detect application’s memory violation of MPI-standard:

  Application’s usage of undefined data
  Application’s memory access due to MPI-semantics

•  Detect Non-blocking/One-sided communication errors:
  Functions in BTL layer for both communications
  Set memory accessibility independent of MPI operations
  i.e. only set accessibility for the fragment to be sent/received

•  MPI object checking:
  Check definedness of MPI objects that passing to MPI API
  MPI_Status, MPI_Comm, MPI_Request and MPI_Datatype
  Could be disabled for better performance

Open MPI valgrind extension
•  Non-blocking send/receive buffer error checking

MPI-Layer

PML
P2P Management Layer

BML
BTL Management Layer

BTL
Byte Transfer Layer

Buffer

not accessible

not accessible
Fragn

MPI_Isend

Proc0 Proc1

MPI_Irecv

MPI_Wait
MPI_Wait

Inaccessible

unaddressable

Frag1

Frag0

Fragn

Inaccessible

unaddressable

5

Open MPI valgrind extension
•  Non-blocking buffer accessed/modified before finished

MPI_Isend (buffer, SIZE, MPI_INT, …, &request);
buffer[1] = 4711;

MPI_Wait (&req, &status);

•  Side note:
  MPI-1, p30, Rationale for restrictive access rules; “allows better

performance on some systems”.

MPI_Isend (buffer, SIZE, MPI_INT, …, &request);
result[1] = buffer[1];

MPI_Wait (&request, &status);

•  The standard does not (yet) allow read access:

Open MPI valgrind extension
•  Access to buffer under control of MPI:

MPI_Irecv (buffer, SIZE, MPI_CHAR, …, &request);
buffer[1] = 4711;

MPI_Wait (&request, &status);

•  Side note: CRC-based methods do not reliably catch these cases.

•  Memory that is outside receive buffer is overwritten :
buffer = malloc(SIZE * sizeof(MPI_CHAR));
memset (buffer, SIZE * sizeof(MPI_CHAR), 0);

MPI_Recv(buffer, SIZE+1, MPI_CHAR, …, &status);

•  Side note: MPI-1, p21, rationale of overflow situations: “no memory that
outside the receive buffer will ever be overwritten.”

6

Open MPI valgrind extension

•  Side note: This field should remain undefined.
  MPI-1, p22 (not needed for calls that return only one status)
  MPI-2, p24 (Clarification of status in single-completion calls).

•  Usage of the Undefined Memory passed from Open MPI
MPI_Wait(&request, &status);
if (status.MPI_ERROR != MPI_SUCCESS)

•  Write to buffer before accumulate is finished :
MPI_Accumulate(A, NROWS*NCOLS, MPI_INT, 1, 0, 1, \
 xpose, MPI_SUM, win);

A[0][1] = 4711;
MPI_Win_fence(0, win);

Thank You

•  Thank You very much!

