
A Fault Tolerant MPI Standard for
HPC Applications and Libraries

Dr. Joshua Hursey
Oak Ridge National Laboratory

http://users.nccs.gov/~jjhursey

2

Fault Tolerance: The approaching storm

•  HPC system reliability is a problem for:
–  Long running applications running at any scale, and
–  Any application running at large scale

As the number of components in an HPC system
increase the overall system reliability diminishes.

•  International Exascale Software Project:
–  Failures will no longer be rare events, but normal events that the application must be

prepared to handle.
–  Projected Mean Time To Failure (MTTF):

•  Petascale: O(days) Exascale: O(minutes)
–  Fault Tolerant MPI needed by 2012 – 2013 timeframe

Cappello, Geist, Gropp, Kale, Kramer, and Snir, “Toward exascale resilience,” 2009.
Exascale Roadmap: http://www.exascale.org/iesp/IESP:Documents

3

MPI Forum Fault Tolerance Working Group

•  Our Mission:
–  Define a set of semantics and interfaces to enable fault tolerant applications and

libraries to be portably constructed on top of MPI.

•  Application Involved Fault Tolerance (not transparent)
–  Algorithm Based Fault Tolerance (ABFT)
–  Natural Fault Tolerance
–  Middleware libraries that provide applications with various fault tolerant services

•  Some driving goals:
–  Scalability, performance, localized recovery, and layered library support.

MPI Standard does not address interface semantics after process failure.
“After an error is detected, the state of MPI is undefined.”

4

Proposal & Prototype Co-Development
•  Fail-stop failures:

–  Process is permanently stopped, often due to crash.

•  Development stages: Proposal Prototype (Open MPI)
1.  Run-through stabilization MPI-1 (complete) MPI-1 (complete)

 MPI-2 (in development) ---
2.  Process recovery In-development ---

•  Concurrently working with applications and libraries
–  Helps to ground the proposal, and provide real-world examples for new developers
–  We can always use more use-cases, libraries, and applications

5

Stage 1: Run-through Stabilization
0 1 2 3 4 5 6 7

0 1 X 3 4 X 6 7

Processes 2 & 5 Fail

Process Failure Semantics
MPI_Send(rank=2) // MPI_ERR_RANK_FAIL_STOP
MPI_Send(rank=3) // MPI_SUCCESS
MPI_Recv(rank=6) // MPI_SUCCESS
MPI_Bcast() // MPI_ERR_RANK_FAIL_STOP

0 1 X 3 4 X 6 7

Application Recognizes
Failed Processes:

 Becomes MPI_PROC_NULL

Local Failure Recognition
MPI_Comm_validate_rank(comm, rank, state)
MPI_Comm_validate(comm, incnt, outcnt, states)

Collective Failure Recognition
MPI_Comm_validate_all(comm, count)

Post-Recognition Semantics
MPI_Send(rank=2) // MPI_SUCCESS
MPI_Send(rank=3) // MPI_SUCCESS
MPI_Recv(rank=6) // MPI_SUCCESS
MPI_Bcast() // MPI_SUCCESS*

6

How to learn more & get involved
•  Looking for application and library developers

–  More use cases, and early adopter feedback
–  Watch for the Open MPI prototype in early 2011

•  MPI Forum Meetings:
Website: http://meetings.mpi-forum.org

•  MPI Forum Fault Tolerance Working Group:
Website: http://meetings.mpi-forum.org/mpi3.0_ft.php

Mailing List: http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi3-ft

Proposal: http://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage

