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Agenda 

•  Open MPI Project / Community 

•  Roadmap 

•  Select organization project updates 
! Nvidia, Fujitsu, U. Tennessee, Cisco, others 

•  The (continuing) road to MPI-3 

•  Community questions 
!  Feedback: http://www.open-mpi.org/sc2011  



Open MPI Is… 

•  Evolution of several 
prior MPI’s 

•  Open source project 
and community 
!  Production quality 

!  Vendor-friendly 

!  Research- and 
academic-friendly 

•  MPI-2.1 compliant 

PACX-MPI 

LAM/MPI 

LA-MPI 

FT-MPI 

Sun CT 6 



Members, Contributors, Partners 



Jeff Squyres 

Roadmap 



Versioning scheme 

•  Open MPI has 2 concurrent release series 
!  “Feature series”   " v1.<odd> 

!  “Super stable series”  " v1.<even> 

•  Both are tested and QA’ed 
! Main difference between the two is time 



Development 
trunk 

Transition to super stable 

Feature Series 
T

im
e 

v1.5 
v1.5.1 
v1.5.2 

New features, 
enhancements 

v1.6 
v1.6.1 Bug fixes only 

New branch, to become v1.7 / v1.8 

Branch to create 
Feature series 



v1.4 Series Sunset 

•  v1.4 is the current “super stable series” 

•  Likely to only have one more release 
!  A few more bug fixes have crept in 

!  v1.4.5 possibly in December 

 

 

                         So long, v1.4 series! 



v1.5 " v1.6 Transition 

•  ABI change since v1.4 

•  New features over the v1.5 series 
!  Support for Mellanox “MXM” and offloaded 

collectives support (Voltaire) 

!  ARM support 

!  InfiniBand failover transport 

! WinVerbs support 

!  Significant run-time scalability, robustness 

! …oodles of little improvements and fixes 



v1.5 " v1.6 Transition 

•  One more release in v1.5 
!  Final MPI-2.2 functionality (no strong demand) 

!  hwloc version bump 

!  Stronger PMI support 

! Usual array of bug fixes, minor enhancements 

•  Aiming for December, 2011 
! US holiday schedule may force pushing to Jan 

!  Transition to v1.6 a fixed time after that 

!  ESTIMATE: Q1 2012 



v1.7 Sunrise 

•  Several upcoming v1.7 features discussed 
later in this presentation 

•  ABI break from v1.5 / v1.6 

•  Gating factors for v1.7 branch: 
!  v1.6 release 

!  Stability of new trunk features 

! Have not yet elected v1.7 release managers 

•  ESTIMATE: Q2 2012 



Rolf vandeVaart 

Nvidia Update 



NVIDIA and Open MPI 

Rolf vandeVaart 

November 16, 2011 



Why 

"   Tremendous growth in CUDA adoption 

 



Joined in April, 2011 



Make Open MPI aware of CUDA 

"   Allow users to send and receive GPU buffers directly 

"   Hide complexity with the MPI stack 



Make Open MPI aware of CUDA 

"   Stage data in host 
memory prior to MPI 
calls 

 
cuMemAlloc(devptr, size) 
kernel<<grid, block>>(devptr) 
hostptr = malloc(size) 
cuMemcpy(hostptr, devptr, size) 
MPI_Send(hostptr, …)   

 

"   Access device memory 
directly from MPI calls 

 
 
 
cuMemAlloc(devptr, size) 
kernel<<grid, block>>(devptr) 
MPI_Send(devptr, …)   

 

 



Move GPU buffers within MPI 

"   Original 

 

 

 

 

"   New 

 



Open MPI Plan 

Three Phases 

1.  Add basic support - Done 

2.  Add registration of internal buffers - Done 

3.  Add interprocess memory support within a node – 
prototype working 



Phase 1 

"   All changes were made in datatype and convertor 
code. 

"   Add new pointer in convertor that points to a 
memcpy routine.  

"   When MPI request is initialized, input buffer is 
queried and memcpy routine can be changed to 
CUDA routine, cuMemcpy   

"   Modify opal_convertor_need_buffers() to return true 
if buffer is device memory (special flag added to 
convertor). 



Phase 1 - Continued 

"   Code is enabled with –with-cuda and –with-cuda-
libdir. 

"   Added to Open MPI trunk April, 2011 
" http://www.open-mpi.org/faq/?category=building#build-cuda 

" http://www.open-mpi.org/faq/?category=running#mpi-cuda-support 

 



Support 

"   With these changes, we can support all the following 
APIs. 
"   MPI_Send, MPI_Recv, MPI_Isend, etc. 

"   MPI_Bcast, MPI_Gather, MPI_Scatter, etc. 

"   No support for reductions or one-sided. 

"   Supports both contiguous and non-contiguous 
datatypes. 



Issues - Performance 

"   Each call to cuMemcpy incurs a 10us overhead. 

"   For IB and TCP, forcing usage of the pipelined send 
protocol can affect large message performance. 

"   For SM, overhead of cuMemcpy limits performance 
for large messages also. 



Phase 2  

"   Register internal host buffers with 
cuMemHostRegister.   

"   Improved IB performance  

"   Allows possible change to asynchronous 
cuMemcpys in the MPI library. 

"   Added to Open MPI trunk August, 2011 



Phase 3 – Improve on-node 
performance 

"   CUDA 4.1 added new interprocess communication 
utilities. 

 
"   cuIpcGetMemHandle  
"   cuIpcOpenMemHandle  
"   cuIpcCloseMemHandle  
"   cuIpcGetEventHandle  
"   cuIpcOpenEventHandle 

 



Remote GET for GPU memory 



Memory Handles 

"   cuIpcGetMemHandle – 1 usec 

"   cuIpcOpenMemHandle – 100 usec 

"   Therefore, cache the memory handles from remote 
processes and reuse them if the user reuses them.  
Similar to IB BTL. 

"   Great benefit where user buffers are reused. 



GPU to GPU within node 
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Future 

"   More use of CUDA asynchronous copies 

"   Improved GPU to GPU memory communication 
between nodes. 

"   Better noncontiguous datatypes and collectives. 
(NVIDIA funding university research into this) 



The ‘Super’ Computing Company 
From Super Phones to Super Computers 

Thanks 

rvandevaart@nvidia.com 



Shinjii Sumimoto 

Fujitsu / K Computer Update 



#1, baby! 

•  10.51 petaflops 
!  K “cranked it up to 11” (rounding up #) 

.51 



George Bosilca 

Bleeding edge research 



RUNTIME 



Flexibility 

•  Support several backend runtimes 
!  Eventually with different levels of integrations 

•  Notifiers / specialized logging services might not be 
available everywhere 

!  And different capabilities 
•  MPI 2 dynamic processing or fault tolerance might 

be only partially supported in some environments. 

•  Open RTE, PMI, Hydra, local 



Scalability 

•  Startup 
!  Gracefully handle many processes per node 

!  Minimize resource consumption while maximizing parallelism: 
build specialized network overlays 

•  Business card (Modex) exchange 
!  Use the network overlays to exchange the business cards of the 

participating processes 

!  Keep one single copy per node shared between all local 
processes 

!  Update the data asynchronously 

Bosilca, G., Herault, T., Razmerita, A., Dongarra, Jack J., “On Scalability for MPI 
Runtime Systems ,” Cluster 2011. 

Bosilca, G., Herault, T., Lemarinier, P., Razmerita, A., Dongarra, Jack J., “Scalable 
Runtime for MPI: Efficiently Building the Communication Infrastructure,” EuroMPI 
2011 - poster. 
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Figure 4: Execution time of an empty MPI appli-
cation with the PLM prsh at various δ parameters
(routed δ−ary tree)

vanilla ORTE and MPICH2 Hydra with rsh launcher, we
suspect Hydra is afflicted by the same behavior.

Using a launcher dedicated to clusters management, SLURM,
both vanilla ORTE and MPICH2 Hydra achieve a notably
higher performance: not being responsible to launch each
and every rsh commands, they can remain in the main loop
to accept incoming connections, and avoid the connection
re-emission penalty. However, because the only contact in-
formation that can be passed to the launcher is the contact
information of the only existing process at the time of the
launch (mpirun), the approach remains centralized. There-
fore, every daemon has to connect to the mpirun to boot-
strap the contact information exchange. At larger scales
(above 500 nodes), the overhead of handling the increas-
ing number of connections becomes significant, and the dis-
tributed approach of the PLM prsh is able to achieve a lower
overhead even when compared with a scalable launcher.

One can also see by comparing both prsh measurements
that the message routing topology, has no measurable effect
on the performance of a non-MPI application. When launch-
ing such an application, the only impact of this topology is
on the phase 3 of the launch process: different broadcast
trees are used. However, both broadcast trees (binomial
tree and δ−ary tree) appear to provide similar performance.

MPI overhead. Figure 4 is similar to Figure 2: it presents
the evaluation of the impact of the δ parameter, on an empty
MPI application. The behavior is significantly different in
this case: all versions keep a consistent behavior, and the
progression of the execution time becomes linear.

The Open MPI library, when it enters its MPI_Init rou-
tine, starts by exchanging a significant amount of informa-
tion above the out-of-band messaging system of ORTE, dur-
ing an operation called the modex. This operation consists
in an all-gather of the contact information of the MPI pro-
cesses themselves (including low level communication device
connection information). This modex operation dominates
the launching time, and introduces a linear progression. To
tackle this overhead, it will be necessary to adapt the modex
operation, which is left for future work.
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Figure 5: Execution time of an empty MPI applica-
tion with the PLM prsh, and comparison with other
runtimes

MPI overhead comparaison. As illustrated by Figure 5,
when compared to the state of the art runtime environments,
the PLM prsh still provides significant reductions of the Init
/ Finalize overhead. Based on the data in the figure, at 900
nodes the PLM prsh provides a factor 5 speedup when com-
pared to other rsh-based launchers. In the case of SLURM-
based launcher, even if this factor is reduced, it remains ap-
parent starting from 500 nodes and going up to about 2 at
900. All runtimes, including the SLURM-based launchers,
exhibit linear behaviors when launching MPI applications.
However, the slope of the PLM prsh is the smallest one,
potentially offering the most scalable approach.
When comparing the two PLM prsh curves, one using

the δ−ary tree the other a binomial tree as the underling
routing topology, one can see small variations in the execu-
tion time. The modex operation is done using a all-gather
above the routing tree. Using different trees to complete this
operation does not introduce a significant performance dif-
ference; however another implementation for the all-gather
could take advantage of the routing information to improve
the dissemination of information.

6. DISCUSSION

A linear regression of the empty MPI applications launch-
ing times for both rsh-based frameworks, and for the PLM
prsh, estimates that the PLM prsh has a progression slope
an order of magnitude smaller than the others rsh-based
launchers. The estimation forecasts that up to 20,000 com-
puting nodes can be launched in less than a minute. It is
thus reasonable to consider it for nowadays supercomputers.
Improvement in the MPI library and the routing systems
will need to be considered to prepare for larger scales. From
the experience harnessed while developing the PLM prsh, we
isolate two major features that we think crucial to obtain a
reasonable launching / managing overhead:

1) Parallel Launching. Parallel launching remains a key
component to obtain a lower launching time, one cannot
afford to iterate over a set of launching commands. Using
a more efficient approach is required, such as a recursive

like a2a, or even a simple empty MPI application, like initfinalize. This is
due to the third phase of the launching in ORTE, the modex (see Section 3),
that introduces a linear component to the performance. As illustrated by the
fact that there is no significant difference between a2a and initfinalize, once
this modex is completed, all nodes are able to communicate without significant
overhead, highlighting the benefit of this initial exchange of MPI-level contact
information.
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Fig. 2: Comparison with other MPI
runtime systems

Fig. 2 compares the two ORTE imple-
mentations with Hydra (MPICH2), and
ScELA (MVAPICH) for the three bench-
marks, and various number of nodes. Al-
though Hydra performs slightly better
than both ORTE implementations at a
small scale, ORTE reaches the same per-
formance for 154 nodes and above. After
about 166 nodes, both Hydra and ScELA
for the /bin/true benchmark suffer from
connections storms, that impact the per-
formance by introducing a delay of 3s, due
to TCP SYN packets retransmission. The tree launching capability of ScELA is
limited to MPI applications, and ScELA keeps a similar, although measurably
lower, performance as the two ORTE implementations. A tight integration of
the communication infrastructure building process and the launching system, as
implemented in ORTE, enables to obtain a better scalability.

5 Conclusion

In this paper, we presented two strategies for the construction of a runtime com-
munication infrastructure running in parallel with the deployment of the runtime
processes and the deployment of the parallel application. The first strategy uses
an improved flooding algorithm, that enables any runtime process to communi-
cate with any other directly, thus providing an arbitrary routing topology for
the runtime. The second strategy uses an ad-hoc self-adapting algorithm, that
transforms the initial spawning tree into a binomial graph, not only sharing the
needed contact information (and only this information), but also establishing
at the same time the corresponding links. We implemented both algorithms in
ORTE, the runtime system of Open MPI, and compared the implementations
with the state of the art runtime environments for MPI. Experiments demon-
strated an improved scalability, highlighting the importance of tight integration
between launching and communication infrastructure construction, and the ad-
vantages of a flexible routing topology at the runtime level.

•  Self-adapting algorithms to 
evolve from any type of 
spanning tree toward BMG 

•  Good candidate for resilient 
runtime 



Fault Tolerance 



Correlated Set in Message Logging 

Coordinated C/R 

•  A complete checkpoint is taken 
at specified time intervals 

•  In case of a failure all 
processes rollback to the last 
valid checkpoint 

•  The time to checkpoint strongly 
depends on the checkpoint 
support (I/O bandwidth) 

Uncoordinated C/R 

•  A single checkpoint is taken at 
specified time intervals 

•  In case of a failure one 
process rollback to the last 
valid checkpoint 

•  The time to checkpoint barely 
depends on the checkpoint 
support (I/O bandwidth) 



Correlated Set Coordinated Message Logging 

•  Hybrid between coordinated and uncoordinated 
•  Codependent failures are defined as sets of processes 

prone to fail simultaneously (cores of a same node) 
•  Codependent processes use coordinated checkpoint: relieves 

the need for expensive sender-based logging 
•  Non codependent processes are still uncoordinated  and 

benefit from faster recovery 
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Correlated Set in Message Logging 
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4.3 Cluster of Multicore Performance

Figure 6 presents the performance of the HPL benchmark on the Dancer cluster,
with a one process per core deployment. For small matrix sizes, the behavior is
similar between the three MPI versions. However, for slightly larger matrix sizes,
the performance of regular message logging suffers. Conversely the coordinated
message logging algorithm performs better, and only slightly slower than the
non fault tolerant MPI, regardless of the problem size.

On the Dancer cluster, the available 500MB of memory per core is a strong
limitation. In this memory envelope, the maximum computable problem size on
this cluster is N=28260. The extra memory consumed by payload copy limits the
maximum problem size to only N=12420 for regular message logging, while the
reduction on the amount of logged messages enables the coordinated message
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Fig. 6. HPL cluster performance (Dancer cluster, IB20G, 8 nodes, 64 cores)

logging approach to compute problems as large as N=19980. Not only does
partial coordination of the message logging algorithm increase communication
performance, it also decreases memory consumption.

5 Related Works

Recent advances in message logging have decreased the cost of event logging [3].
As a consequence, more than the logging scheme adopted, the prominent source
of overhead in message logging is the copy of message payload caused by in-
transit messages [4]. While attempts at decreasing the cost of payload copy have
been successful to some extent [2], these optimizations are hopeless at improving
shared memory communication speed. Our approach circumvents this limitation
by completely eliminating the need for copies inside many-core processors.

Communication Induced Checkpoint (CIC) [12] is another approach that
aims at constructing a consistent recovery set without coordination. The CIC
algorithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [1].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint traffic, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [11], Ho, Wang and Lau propose a group-based approach that combines
coordinated and uncoordinated checkpointing, similar to the technique we use in

Non deterministic events are still 
logged, but payload in a 
correlated set is not 



MPI Forum Fault Tolerance Working Group 

•  Application involved fault tolerance (not transparent FT) 
!  Natural & Algorithm Based Fault Tolerance (ABFT)  

•  Fail-stop process failure: 
!  MPI process permanently stops communicating with other 

processes. 
•  Two Complementary Proposals: 

!  Run-Through Stabilization:  (Target: MPI-3.0) 

•  Continue running and using MPI even if one or more MPI processes 
fail 

!  Process Recovery:   (Target: MPI-3.1) 

•  Replace MPI processes in existing communicators, windows, file 
handles 

•  Prototype in Open MPI is guiding proposal development 
MPI Forum Fault Tolerance Working Group: 
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/FaultToleranceWikiPage 



Open MPI Prototype of the 
Run-Through Stabilization Proposal* 

•  Pt2Pt Overhead: NetPIPE over shared memory 
!  Latency:                0.84  to 0.85 microseconds   (1.2%) 
!  Bandwidth:  8957 to 8920 Mbps   (0.4%) 

•  Fault Aware Collective Performance 
!  MPI_Barrier & MPI_Bcast: 

Within 1% of fault-unaware, regardless of # failures 

!  MPI_Comm_validate_all: New fault tolerant 
agreement collective 
Within 3% of MPI_Allreduce() collective, log-scaling 

•  Prototype available to interested application developers 
!  Contact: Josh Hursey     jjhursey@open-mpi.org 

Hursey, J., Graham, R., “Analyzing Fault Aware Collective Performance in a Process Fault 
Tolerant MPI,” Elsevier Journal of Parallel Computing Special Issue, 2011 (in press). 

Hursey, J., Naughton, T., Valle, G., Graham, R., “A Log-Scaling Fault Tolerant Agreement 
Algorithm for a Fault Tolerant MPI,” EuroMPI, 2011. 



Point-to-point communications 



Open MPI for Cray XE Systems 

 
•  uGNI and Vader BTLs provide point-to-point and shared-memory 

communication functionality 

•  uGNI BTL implements three protocols for Internode communication 

!  Eager protocol for short message transfer 

•  Send/Recv for short message (SMSG)  
!  Rendezvous protocol for long message transfer 

•  RDMA Read/Write for medium message (FMA) 

•  Offloaded RDMA/Write for long message (BTE) 
•  Vader BTL provides protocols for Intranode communication 

!  Single copy between source and destination buffers using Cray 
xpmem 

!  Nemesis-style lock free fifos for small message delivery 

 

 



Open MPI uGNI BTL Latency and Bandwidth 
(Preliminary Results)  
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Adapting to NUMA architectures 

CPU locality btl_eager_limit pipe_size use_knem DMA_min 

Tigerton No shared L2 2k 0.5 * L1 size true 2MB 

Nehalem EP No shared L2 4k 0.5 * L1 size false 0 

Tigerton Shared L2 2k L1 size true 4MB 





Collective communications 



Hierarchical Collectives Software 
Layers - Cheetah 

Basic Collectives Framework Subgroup Framework 

IB  IB 

OFFLOAD 
Pt2Pt SM Socket IBNET Shared 

Memory 

Collective Framework 

Tuned (pt2pt)        
Collectives Comp. 

MLNX 
OFED 

ML – Hierarchical 
Collectives Comp. 

MLNX 
OFED 

Module Component Architecture 

OMPI 



Barrier – Comparison with Native 
MPI 
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Large-Scale Broadcast Performance: 
OMPI vs Native MPI large message 16 MBytes 
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Non-blocking Bcast Overlap – IB CORE-
Direct 
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Architecture aware collective 
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Jeff Squyres 

Cisco 



Cisco 1st Gen. Ethernet MPI Transport 
Technology Preview 

•  Demo in Cisco booth (#1317) 
! New Open MPI BTL (point-to-point transport) 

!  Ethernet NetPIPE latency: 5.17us 

•  Using Linux VFIO technology 
! NOTE: VFIO is not upstream yet 

•  This is not RoCE, not iWARP 

•  Cisco 2nd generation NIC coming “soon” 
!  Latency will be significantly lower than 5.17us 



Processor Affinity 

•  Core counts are rising 

•  Users are asking for powerful, flexible 
affinity controls 
!  Bind processes to an entire sockets 

!  Bind processes to half the cores in a socket 

!  Bind processes to a NUMA locality 

! …etc. 

•  Joint work between Cisco, Oracle, ORNL 



Processor Affinity 

•  Processor affinity revamp 
! Overview presented at SC’10 SoU BOF 

!  Took a loooong time to implement 

•  Branched for this work last year 
!  Just folded first major part back to SVN trunk 

! More coming soon (still testing) 

•  Slated for v1.7 
! We need real-world feedback 



Processor Affinity 

•  mpirun reads from 
compute nodes 
!  Sockets, cores, 

threads, caches, 
NUMA, etc. 

!  Maps MPI processes 
according to what 
exists 

•  Useful for: 
!  Dissimilar head node 

!  Heterogeneous 

mpirun 

Compute nodes 



Processor Affinity 

•  Clarified, fixed mpirun affinity options 
!  --map-by <entity> 
!  --bind-to <entity> 

•  New options for flexible mapping / binding 
!  Inspired by Blue Gene XYZ specification 

!  --map <letter sequence> 
!  --bind <letter sequence> 
!  Letters for thread, core, socket, NUMA node, 

caches, server node 



Jeff Squyres 

The (Continuing) Road to MPI-3 



MPI-3 Prototyping Work 

•  MPI-3 has a “freely available 
implementation” requirement 
! Much work being prototyped in Open MPI 

! Will help speed our final implementation 



MPI-3 Prototyping Work 

•  New Fortran ‘08 bindings 
! Compile-time sub. parameter type safety 

! Unique types for MPI handles 

!  Safe non-blocking MPI functionality (when 
compilers support it) 

•  Better “use mpi” implementation 
! …except for gfortran $ 

•  Craig Rasmussen (Los Alamos National 
Labs), Jeff Squyres (Cisco) 



MPI-3 Prototyping Work 

•  MPI_MPROBE 
! Matched probe 

! Helpful for threaded MPI apps 

! Helpful for upper-level bindings (e.g., Python) 

•  Almost ready to be folded back to SVN 
trunk 

•  Brian Barrett (Sandia National Labs) 



MPI-3 Prototyping Work 

•  Run-through stabilization prototype 
! Gracefully allow for process failure(s) 

! New MPI API functions 

!  Adapt underlying MPI run-time to not 
automatically kill the entire job 

! Define what happens in the MPI layer 

•  Josh Hursey (Oak Ridge National Labs) 



MPI-3 Prototype Work 

•  New one-sided / RMA chapter 
!  Implementation on Portals 

!  Tweaking of infrastructure for other underlying 
transports 

•  Almost ready to be folded back to SVN 
trunk 

•  Brian Barrett (Sandia National Labs) 



MPI Forum = Needs Feedback 

•  MPI Forum BOF tonight 
!  5:30pm, TCC 301/302 

!  Slides to be posted on meetings.mpi-forum.org 

•  PLEASE send your feedback 
! Many of the Forum are implementers 

! Need real world user feedback 

•  Next face-to-face meeting: 
! Cisco, San Jose, CA, USA, Jan. 9-11, 2012 



George Bosilca 

Community Questions 



•  Community questions 
!  Feedback: http://www.open-mpi.org/sc2011  



Come Join Us! 

http://www.open-mpi.org/ 


