
Open MPI State of the Union XV
Community Meeting
George Bosilca

Edgar Gabriel

Pritchard, Howard

Tomislav Janjusic

Quick review

Open MPI versioning

Open MPI versioning
• Open MPI uses “A.B.C” version number triple
• Each number has a specific meaning:

This number changes when backwards
compatibility breaks
This number changes when new features
are added
This number changes for all other releases

A

B

C

Definition
• Open MPI vY is backwards compatible with

Open MPI vX (where Y>X) if:
■ Users can compile a correct MPI / OSHMEM

program with vX
■ Run it with the same CLI options and MCA

parameters using vX or vY
■ The job executes correctly

What does that encompass?
• “Backwards compatibility” covers several areas:

■ Binary compatibility, specifically the MPI / OSHMEM
API ABI

■ MPI / OSHMEM run time system
■ mpirun / oshrun CLI options
■ MCA parameter names / values / meanings

Version Roadmaps

• Release managers
▪ Howard Pritchard,

Los Alamos National Lab
▪ Geoff Paulsen, IBM

v4.0.x (Previous stable)
• Current release: v4.0.7
• Released Nov 15, 2021

• No further releases are
planned

• Release managers
▪ Brian Barrett, AWS
▪ Jeff Squyres, Cisco

v4.1.x (Current stable)
• Current release: 4.1.6

▪ September 2023

Open MPI v5.0.0

Many improvements are coming!

v5.0.x

• Current release
▪ V5.0.0

• Release managers
▪ Austen Lauria, IBM
▪ Tomislav Janjusic, NVIDIA
▪ Geoff Paulsen, IBM

Open MPI v5.0.0 Major Changes
• Replaced launcher ORTE with PRRTE

• PMIx Reference Runtime Environment (v2.0.x)
• Requires PMIx v4.1.x

• Added a new accelerator framework
• Allows for modularized implementation of various devices

• Support for MPI Sessions added

• OpenIB BTL has been removed

• Replaced Debugger (MPIR) interface with PMIx Tools Debugger interface

• Removed MPI C++ bindings

New and Improved Runtime
Environment

• PRRTE is our new launcher!
• PMIx Reference Runtime Environment (v2.0.x)
• PMIx standard based

• ORTE effectively forked into its own repo

• Run time no longer specifically tied to Open MPI
• Also works with other MPI implementation
• And in other non-MPI/HPC environments

https://github.com/openpmix/prrte/

What is PRRTE?
• PMIx Reference Runtime Environment
• Feature full, scalable, PMIx-Enabled runtime environment

• It is an open source, community supported, runtime implementation
• Supports one-off jobs via prterun and multiple jobs via persistent daemons
• Requires OpenPMIx >= 4.1.0

• Evolved from ORTE in Open MPI to standalone project
• Provides much of the same feature set as ORTE, plus more
• Some mpirun command line options have changed
• The changes were documented and addressed via aliases
• mpirun and mpiexec are now small programs that exec prterun

https://github.com/openpmix/prrte

What is OpenPMIx
• Is a feature complete implementation of PMIx standard
• Process Management Interface - Excascale

• Provides an implementation to connect PMIx-enabled clients (e.g., Open
MPI) with tools (e.g., debuggers), and resource managers (e.g, PRRTE,
SLURM, IBM JSM)

• PMIx also provides event notification (fault tolerant libraries), and process
wire-up, including “instant on” where supported

• OpenPMIx is an open source, community supported, scalable
implementation

• OpenPMIx releases tied to corresponding PMIx Standard releases
• Proving ground for new PMIx Standard additions
• Used on many large scale HPC systems

https://github.com/openpmix/openpmix

New v5.0.x defaults

libmpi.solibmpi.so

≥ Open MPI 5.0.0≤ Open MPI v4.1.x

Plugins located in the libraryPlugins loaded dynamically at runtime

Packaging
Package V4.x V5.0.x

Hwloc Prefer external Prefer external

Libevent Prefer external Prefer external

Open PMIx Prefer external Prefer external

ROMIO Internal Internal

Treematch Internal Internal

PRRTE N/A Prefer external

• v4.x: OMPI prefers an external library and only allow the use of external libraries
newer than internal versions

• v5.0.x: OMPI prefers external packages that meet our version requirements and allow
them even if they are older than our internal version

ABI / Command Line Changes
• Now following GNU CLI conventions

• Multi-letter tokens are double-dash (e.g., --mca not –mca)
• Will automatically replace and print a warning if a single-dash is used

• Some MCA params have moved from
ompi_ to prte_ or pmix_

• Automatically convert MCA params to their proper project
• Can be specified in default param files, environment, and command line.

• To see the full list of MCA parameters for each project, run ompi_info --all,
prte_info --all, or pmix_info --all

• For further information please refer to the docs at
https://docs.open-mpi.org/

https://docs.open-mpi.org/en/v5.0.x/

Open MPI Documentation
• New central docs location: https://docs.open-mpi.org/
• Combines all previous documentation:

■ README
■ NEWS
■ FAQ
■ Man pages

• These HTML pages are also included in the distribution tarball
■ Suitable for offline / disconnected-from-the-internet viewing
■ Man page files also included in the tarball

• Contains high-level descriptions, detailed examples, man pages (MPI APIs
and command line executables), etc.

https://docs.open-mpi.org/

New Features
• User Level Fault Mitigation (ULFM)
• Conforms to the ULFM MPI Standard draft proposal
• Enabled by default
• New ULFM test suite in

github.com/open-mpi/ompi-tests-public repository

• Threading MCA framework
• pthreads (default), Argobots, and Qthreads.
• Specify by configure with “--with-threads=”

• Enable load-linked, store-conditional atomics for AArch64
• Up to 40x performance improvement with multi-threaded

lifo/fifo test benchmarks

https://github.com/open-mpi/ompi/pull/7740
https://github.com/open-mpi/ompi-tests-public
https://github.com/open-mpi/ompi/pull/6578
https://github.com/open-mpi/ompi/pull/8412

New Features Cont.
• Added OMPIO GPFS filesystem support.
• Added OMPIO atomicity support.

• --mca ompi_display_comm 1
• Displays a proc-by-proc communication

matrix to stdout

• FP16 support via MPIX extensions
• memory_patcher
• Add ability to detect patched memory.

• OpenSHMEM v1.5 compatible
• Headers present with v1.5 features in development

https://github.com/open-mpi/ompi/pull/9513

New Features Cont.
• New UCC (Unified Collective Component) from UCX community
• Configure with --with-ucc=<DIR> and increase priority
• Added MPI_Scatter() and MPI_Iscatter() collectives

• Added a new Accelerator framework.
• CUDA-specific code was replaced with generic framework standardizing

various device features
• Allows for modularized device implementation
• Open MPI build can be shipped with CUDA support enabled without

requiring CUDA libraries
• Added CUDA support to mtl/ofi
• Requires Libfabric >= v1.9

• Hierarchical collective framework (HAN) is the default

https://github.com/open-mpi/ompi/pull/8536

Removed Features
• osc/pt2pt
• Not maintained, very buggy
• Replaced with osc/rdma + btl/tcp

• btl/openib
• IB/RoCE now supported via UCX

• Legacy btl/sm
• Replaced with btl/vader, which is renamed to btl/sm (shared-memory).
• Alias “vader” exists for backwards compatibility

• MXM support
• pml/yalla, opal/atomic/mxm, oshmem/spml/ikrit all removed

https://github.com/open-mpi/ompi/pull/7621
https://github.com/open-mpi/ompi/pull/6270
https://github.com/open-mpi/ompi/pull/7671
https://github.com/open-mpi/ompi/pull/7075

Other Removed Features
• 32bit builds are more limited

• Now only supported with C11 compliant compilers

• Support for GNU gcc compilers < v4.8.1

• Deprecate PMI support
• PMI-1 and PMI-2 are no longer supported
• PMI shim is available here

• MPI C++ bindings
• Removed from MPI 3.0 standard (9 years ago)

https://github.com/open-mpi/ompi/pull/8722
https://github.com/open-mpi/ompi/pull/9398
https://github.com/open-mpi/ompi/pull/7431
https://github.com/openpmix/pmi-shim

More Removed Features
• fcoll/two_phase removed

• The “--am” and “--amca” options are deprecated

• patcher/linux
• Attempted to hook calls by patching dynamic symbol table,
• however it did not work in all cases

• Checkpoint-Restart (CR) is now completely removed

https://github.com/open-mpi/ompi/pull/8454
https://github.com/open-mpi/ompi/pull/8054
https://github.com/open-mpi/ompi/pull/8312

MPIR has been removed
• What is MPIR?

• MPI Process Acquisition interface
• Is not an API, but instead "... requires that a tool reads symbol table information

and traces the starter process..."
• Used by debuggers for MPI processes

• Replaced by the PMIx tool interface
• gdb scripts that rely on MPIR_* routines will need to be updated
• Contact your debugger provider for their timeline
• To use non-PMIx enabled debuggers, see MPIR-to-PMIx guide for shim layer

• Initially announced at SC’17 BOF
• Deprecation notice in NEWS in early 2018
• User runtime warning in v4.0.0 (mid/late 2019)
• [Finally] Removed in v5.0.0

https://github.com/openpmix/mpir-to-pmix-guide

MPI-4 support in v5.0.0
• Open MPI v5.0.0 is not MPI-4.0 compliant
• Officially, it is still MPI v3.1 compliant
• However, it does have a number of MPI v4.0 features!

• Support for MPI Sessions

• ERRORS_ABORT infrastructure
• New error classes to distinguish between aborting a communicator and

aborting an entire application

• Initial error handler implementation
• The error handler that is set before MPI is initialized and after it is finalized
• Can be selected from mpiexec/MPI_Comm_spawn() info key parameters

https://github.com/open-mpi/ompi/pull/9097
https://github.com/open-mpi/ompi/pull/7800
https://github.com/open-mpi/ompi/pull/7840

MPI-4 support in v5.0.0 cont.

• Error handling for ‘unbound’ errors to MPI_COMM_SELF
• Requires that unbound errors trigger the error handler on

MPI_COMM_SELF instead MPI_COMM_WORLD

• Persistent collectives added to the MPI_ namespace
• Previously available via the MPIX_ prefix

• MPI_Comm_get_info(), MPI_File_get_info(), and MPI_Win_get_info()
updated to be MPI 4.0 compliant

• Changes to modified keys are now reflected

https://github.com/open-mpi/ompi/pull/7798
https://github.com/open-mpi/ompi/pull/9065
https://github.com/open-mpi/ompi/pull/9246

MPI-4 support in v5.0.0 cont.

• Partitioned communication implemented

• Support for mpi_minimum_alignment info key

• MPI_Info_get_string() support
■ Replaces MPI_Info_get() and MPI_Info_get_valuelen()

• What is still missing ?
■ Big Count (WIP), MPI Events

https://github.com/open-mpi/ompi/issues/9554
https://github.com/open-mpi/ompi/pull/7985
https://github.com/open-mpi/ompi/pull/9546

Open MPI v5.0.x Schedule
• OMPI v5.0.x branched from master

• March 11, 2021

• v5.0.0 Officially released Oct. 27th 2023

• Target date for v5.0.1 Dec 15th 2023
• Bug fix release

• Goal is to stabilize v5.0.x
• Users should start testing and making the switch v5.0.x

Known issues
• We don’t have bugs, we have features

• Please refer to our github for known issues

https://github.com/open-mpi/ompi/issues?q=is%3Aopen+is%3Aissue+label%3A%22Target%3A+v5.0.x%22

OMPI v5.0.0 NVIDIA Updates
Mamzi Bayatpour, Tomislav Janjusic,

Joshua Ladd

• Effort to deliver state-of-the-art performance and be the best-in-class MPI-RMA
implementation

• Worker-Pool implementation (targeting multi-threaded performance)

■ Complete re-design from OSC/UCX generation in v4.1.x.
■ Delivers significantly better performance for multi-threaded applications.

• Bug fixes and stability improvements
■ Nearly 100% passing rate using MPICH and RMA-CI test suites.
■ Capable of running real-world applications (NWCHEM) at large scales with improved performance.

• Resource utilization optimization
■ Complete re-design delivering savings on network resources.

UCX One-sided Component

• OSC thread-multiple performance improvements out-of-the-box in v5.0.0

OSC/UCX: worker pool

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

R
at

e
(m

es
sa

ge
s/

se
c)

Message Size (bytes)

RMA-MT, Put flush,
1Win/Thread, 32Threads

OMPI v4.1.x

OMPI v5.0.0

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1 4 16 64 25
6 1K 4K 16

K
64

K
25

6K

R
at

e
(m

es
sa

ge
s/

se
c)

Message Size (bytes)

RMA-MT, Put flush,
1Win, 32Threads

OMPI 4.1.x

OMPI 5.0.0

Scaling Open MPI to Exascale

• Non-contiguous datatype support

• Resource utilization improvements

• Asynchronous Progress improvements

• Scaling NWCHEM to 16,384 MPI ranks

ARM-CI Strided Data Transfer

0
1
2
3
4
5
6
7
8
9

72 12
8

28
8

64
8
11

52
20

48
32

00
46

08
72

00
12

80
0
18

43
2
21

63
2
32

76
8
48

67
2
66

24
8
86

52
8

13
10

72

16
13

12

23
39

28

35
28

00

52
42

88

72
00

00

99
68

72

12
80

00
0

15
48

80
0

18
12

60
8

20
97

15
2

BW
 S

pe
ed

 U
p

(G
B/

s)

Bytes

ARM-CI, 16N, 32PPN, Strided Data Transfer
Open MPI v5.0.0 Speed Up

Get
Put
Accumulate

NWCHEM Performance

0

2

4

6

8

10

12

14

16

18

20

32 64 128

Sp
ee

d
U

p

PPN

NWChem, Open MPI v5.0.x

8 Nodes 16 Nodes

32 Nodes 64 Nodes

Microsoft Azure HPC
• HBv4 VMs
• Nvidia IB NDR 400
• AMD Genoa
• HPC-X v2.15

Acknowledgements

Our sincere thanks to Microsoft Azure HPC,
Jithin Jose and Jie Zhang, for providing us with

early access to HBv4, Azure’s HPC’s state-of-the-
art HPC VMs.

Support for AMD GPUs in
Open MPI

Edgar Gabriel

edgar.gabriel@amd.com

Open MPI 4.1.x with AMD ROCm Devices

• MPI jobs can utilize ROCm device memory through components
that support AMD GPUs with Open MPI 4.1.x, for example:

• UCX : Point-to-point communication with device memory
(pml/ucx) and one-sided operations (osc/ucx)

• UCC: Collective operations with device memory
(starting from Open MPI 4.1.4) (coll/ucc)

ROCm Support in Open MPI 5.0

• ROCm support added to Open MPI starting v5.0
• ROCm memory type detection
• ROCm device memory allocation
• Data transfer to/from ROCm device memory

• Non-contiguous derived datatypes
• MPI File I/O

• Enables usage of additional data transfer components (e.g., libfabric,
ob1, etc.)

• Query availability of ROCm support in MPI library
(MPIX_QUERY_ROCM_SUPPORT)

Accelerator Framework in Open MPI 5.0

• New framework introducing an abstraction layer for GPU
support in Open MPI

MPI application

Open MPI core

Message
Layer (pml)

ob
1

uc
x

cm …

Collective
operations

(coll)

tu
ne

d

ha
n

uc
c …

One-sided
operations

(osc)

rd
m

a

uc
x …

…
Parallel
File I/O

(io)

om
pi

o

ro
m

io …

Accelerator
(accelerator)

ro
cm

cu
da

…

Open MPI

HPC Applications + Libraries

UCX

verbssockets

HIP

IB/RoCE
HCA

Ethernet
Adapter

Custom NIC GPU CPU

ROCnRDMA/
dmabuf

UCC

shm

pml/ucx osc/ucx coll/ucc

RCCL

Send / Recv

ROCm IPC

Put/Get CollectivesPack / Unpack

accelerator
/rocm

ROCm Aware Open MPI Software Stack with UCX and UCC

• Recommended
software stack for
InfiniBand and RoCE
networks

• Most stable and best
tested configuration

Performance Results: Point-to-Point
Operations

Hardware:
• 8 AMD Instinct MI250 GPUs per node
• 200Gb Broadcom RoCE network interconnect

Software:
• Open MPI 5.0.0
• UCX 1.15.0
• ROCm 5.7.0

Key take-aways:
• Intra-node device-to-device data transfers over high-bandwidth InfinityFabric links
• Direct access to ROCm device buffers for inter-node data transfers using ROCnRDMA kernel component

for RDMA capable network adapters

[1] OSU Benchmark Suite https://mvapich.cse.ohio-state.edu/benchmarks/ (BSD License).

https://mvapich.cse.ohio-state.edu/benchmarks/

Performance Results: MPI_File_read/write

• Enhanced pipeline protocol to perform file I/O operations directly to/from GPU
buffers in the Open MPI 5.0.0

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

SSD DISK

Ex
eu

ct
io

n
Ti

m
e

[s
ec

]

Individual WRITE GPU device memory 2GB

original new pipelined

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SSD DISK

Ex
eu

ct
io

n
Ti

m
e

[s
ec

]

Individual READ GPU device memory 2GB

original new pipelined

Other Transports
•Open MPI using libfabric (pml/cm with mtl/ofi)
• Significantly enhanced support for AMD ROCm devices in libfabric 1.19

• Support for device-to-device IPC transfers
• Support for asynchronous copy operations

• Code contributed by Oak Ridge National Laboratory
•Open MPI using pml/ob1
• Provides support for ROCm device memory through a (host) staging buffer

•More work planned for upcoming Open MPI releases to further enhance
ROCm support for libfabric and ob1

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and
assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of
AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms
and Conditions of Sale. GD-18

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Open MPI Activities at Los Alamos

LA-UR 23-32780

Los Alamos - Current Work

• Support for Intel Ponte Vecchio Accelerators
(ANL focused)

• Open PMIx shared memory based GDS
component – available in upcoming v5.0.0
release

• Initial work to support MPI ABI proposal
• Spack package maintenance

Support for Ponte Vecchio (ZE)

• A ZE component was added to accelerator
framework this past quarter as part of ECP work

• Only available in main branch
• Functional (hopefully). Only lightly tested.
• Testing/development hindered by old software

on sunspot – SLES15sp3 (so no GPU direct),
old CXI version 2.0.2

MPI ABI effort

• Preliminary investigation
• Work will include support for MPI_Count
• Targeting a post 5.0 release stream

Open MPI and Spack

• Things should work if you stick to the 4.1.x
releases
■ No ROCM support however

• 5.0.0 is presenting challenges
■ Hooks to support ROCM in flight
■ Many changes between the 4.1 release stream and

5.0, so you may need to change your spack variants

Amir Shehata, David Bernholdt, Thomas Naughton (ORNL)
Howard Pritchard (LANL)

Open MPI on Frontier

Open MPI on Slingshot 11
• ORNL & LANL porting/tuning for HPE Cray EX

■ OMPI-X: US DOE Exascale Computing Project
■ Support new Open MPI on new exascale systems

• CXI libfabric provider for Slingshot 11
■ Supports host & device (GPU) buffers
■ CXI not directly support on-node comm.

• Explored potential paths to use CXI
1. MTL path − use libfabric tagged message interface
2. BTL path − use libfabric for byte transfer only, MPI

for tag matching & higher level logic
Frontier @ OLCF

ECP OMPI-X Project

New Libfabric “LINKx” provider
• Challenge: MTL framework limited to 1 active component

■ Cannot use both libfabric shared memory & CXI providers
• Create OFI libfabric provider to link other “core” providers

■ Enables Open MPI to use 1 provider for local and remote peers
■ LINKx chooses endpoint provider based on peer locality

• Use CXI (inter-node) and SHM (intra-node)
■ LINKx shares completion & receive queues to improve performance,

reduce memory overhead and honor ordering requirements

UCX

(1) (2)

Focused on MTL path

Libfabric

Current Status
• OSU bi-directional bandwidth

■ Intra-node shows use of LINKx to
avoid egress/ingress

• Status
■ Support for job launch (VNI, PALS)
■ Deployed on Frontier
■ Currently tuning collectives

Key:
Open MPI no LINKx (just cxi)
Open MPI with LINKx
CrayMPICH

8 Shehata ET AL.

(a) H2H inter-node (b) D2D inter-node

F I G U R E 3 Inter-node Point-to-Point Bidirectional Bandwidth osu_bibw

(a) H2H intra-node) (b) D2D intra-node)

F I G U R E 4 Intra-node Point-to-Point Bidirectional Bandwidth osu_bibw

Open MPI configuration is using the libfabric shared memory provider that is part of the LINKx provider. To isolate overheads,
we also run the Open MPI tests with a configuration that eliminates LINKx for the exclusively intra-node (only shm provider)
and inter-node (only cxi provider). This allows us to compare point-to-point performance of the vendor provided MPI against
Open MPI with and without the LINKx layer.

The bi-directional bandwidth for intra-node and inter-node transfers between host-to-host (H2H) and device-to-device (D2D)
data buffers is shown in Figures 3-4. The inter-node cases in Figure 3 follow closely with the vendor provided MPI, with
CrayMPICH doing better in medium sized message and then things converge at the largest message sizes. The Open MPI
“nolinkx-cxi” case shows the performance when using only the CXI provider along the MTL path without LINKx.

Figure 4 shows the Open MPI on-node H2H and D2D performance is very good. The “nolinkx-shm” case shows the
performance of the Open MPI MTL path without the use of LINKx, using only the SHM provider. We see little difference in
the LINKx and nolinkx-shm curves. The poor performance with CrayMPICH with H2H in Figure 4(a) related to an issue on
the system that did not allow XPMEM to be used at runtime. The warning message stated, “XPMEM module is available, but

XPMEM symbols are not visible to CrayMPICH.” Further investigation is needed.

D2D inter-node

Bandwidth
Higher is

better

D2D intra-node

module unload cray-mpich cray-pmi
module use /sw/frontier/ums/ums024/cce/15.0.0/modules
module load openmpi
mpirun --bind-to core --map-by ppr:1:l3cache --np $SLURM_NTASKS gpuwrapper.sh ./app

Getting Started on Frontier

Questions?

Where Do We Need Help?
• Code

■ Any bug that bothers you
■ Any feature that you can add

• User documentation
• Testing (CI, nightly)
• Usability

We

Come join us!

