
1www.myri.com
© 2005 Myricom, Inc.

Lessons learned from MPI

Patrick Geoffray
Opinionated Senior Software Architect

patrick@myri.com



2www.myri.com
© 2005 Myricom, Inc.

GM design

• Written by hardware people, pre-date MPI.

• 2-sided and 1-sided operations:
– All asynchronous.
– All contiguous only.
– All operates on registered buffers.

• Matching on 5+1 bits.
• Receive-ready required:

– If receive not ready -> nack -> try again with exponential back-off.

• Thread-safe but not thread-safe.
• No support for high level protocol progression.



www.myri.com
© 2005 Myricom, Inc.

convenience MPI functions

ADI
CH2

MPICH1-GM stack

CH_P4CH_MPL
CH_GM

shmem/
self

CH_P4CH_MPL CH_NX

GM

applications
MPI API



4www.myri.com
© 2005 Myricom, Inc.

EAGER protocol
• Pools of pre-allocated, pre-registered, aligned and identical send 

buffers and receive buffers.
• Memory copy to a send buffer, send to posted receive buffer, 

memory copy to the user-space buffer when appropriate.

Memory copy

Memory copySender user buffer

Pool of send 
buffers

Pool of receive 
buffers

Receiver user buffer



www.myri.com
© 2005 Myricom, Inc.

small messages : EAGER protocol

mpi_send

MPI_recv complete
or

unexpected

gm_send

size <= 32k

node A node BNetwork



www.myri.com
© 2005 Myricom, Inc.

small messages : EAGER protocol

mpi_send

MPI_recv complete
or

unexpected

gm_send

size <= 32k

node A node BNetwork

gm-ack



7www.myri.com
© 2005 Myricom, Inc.

large messages : RENDEZ-VOUS protocol

• Synchronization via exchange of small GM messages.
• Memory registration on sender and receiver sides.
• One-sided communication for data.



www.myri.com
© 2005 Myricom, Inc.

large messages : RENDEZ-VOUS protocol

mpi_send

MPI_recv complete

gm_send

size >= 32k

gm_put

enveloppe

RTS gm_send

DATA

done notify

node Anode Anode A node BNetwork



www.myri.com
© 2005 Myricom, Inc.

large messages : RENDEZ-VOUS protocol

mpi_send

MPI_recv complete

gm_send

size >= 32k

gm_put

enveloppe

RTS gm_send

DATA

done notify

node Anode Anode A node BNetwork



10www.myri.com
© 2005 Myricom, Inc.

Very large messages: RENDEZ-VOUS protocol
• Pipelined to overlap registration and communication.

PUT

PUT

PUT

PUT

User send buffer User receive buffer
Send Request

RTS

RTS

RTS

RTS

Done



www.myri.com
© 2005 Myricom, Inc.

Registration

• Zero-copy relies on DMA/physical addresses being known for user area
• Message buffers should be gm_registered (costly)
• No explicit registration in MPI, registration reuse is up to 
implementation:

• pin memory for each communication
• or do on-demand registration: maintain a registration cache

requires tracking address space changes:
malloc(), sbrk(), mmap() overloading and tricks.

● The registration cache efficiency can be a major factor in overall app performance



12www.myri.com
© 2005 Myricom, Inc.

GM Design review (MPI)
• Connectionless.

– Native shared receive queue.

• Explicit memory registration.
– Assume overhead out of critical path.

• Receive-ready.
– Assume application cooperation.

• In-order delivery.
– Last byte written last.

• Reliability at NIC level.
– NIC-level ack/timer/resend.

Good !

Bad !

Bad !

Good and Bad !

Bad !



13www.myri.com
© 2005 Myricom, Inc.

Myrinet Express
• Low level interface for 3rd and 4th generation Myrinet hardware:

– MX-2G: D, E, F NICs
– MX-10G: 10G NICs

• Key design elements:
– Low latency / low overhead.
– Optimized for MPI.
– No explicit registration.
– Support for progression.
– Fault-tolerant
– Extensible (collective communications, etc).



14www.myri.com
© 2005 Myricom, Inc.

MX protocol
• MX packet headers contain:

– 64-bit matching information: no need for MPI encapsulation.
– Source id/destination id: drop misrouted packets.
– Session id: protect jobs, basic security.
– Process-to-process sequence number: can receive out of order at the NIC level.
– Message type:

• Tiny
• Small
• Medium
• Medium pipelined
• Large

• MX posted receives contain:
– 64-bit matching information/
– 64-bit matching mask.



15www.myri.com
© 2005 Myricom, Inc.

Tiny messages

Driver

Lib App

Driver

Lib App

NIC NIC
Fabric

Request Data

PIO DMA

Event
queue

Copy

Data



16www.myri.com
© 2005 Myricom, Inc.

Small messages

Driver

Lib App

Driver

Lib App

NIC NIC
Fabric

Request

PIOs

Copy
Data

DMAs

Data
Event
queue

Receive
queue



17www.myri.com
© 2005 Myricom, Inc.

Medium messages

Driver

Lib App

Driver

Lib App

NIC NIC
Fabric

Request

PIO

Data

DMAs

Event
queue

Receive
queue

DMAs

Copy

Send
queue

Copy

Data



18www.myri.com
© 2005 Myricom, Inc.

Large messages

Driver

Lib App

Driver

Lib App

NIC NIC
Fabric

Rendez
vous

Data
Matching

Buffer

Registration



19www.myri.com
© 2005 Myricom, Inc.

Large messages

Driver

Lib App

Driver

Lib App

NIC NIC
Fabric

Data Buffer
Get

Registration

PIO

DMA addresses DMA addresses

DMAs DMAs



20www.myri.com
© 2005 Myricom, Inc.

MPI communication (non) overlap

Request

Ack

Data

Sender Receiver

MPI_ISend MPI_IRecv

MPI_Wait

MPI_Wait

Ack

Comp.

Computation

Polling

Polling



21www.myri.com
© 2005 Myricom, Inc.

Design trial and error: matching in the NIC
• Pros:

– NIC is always ready: perfect overlap of communication and computation for 
large (rendez-vous) messages.

– Offload matching overhead.

• Cons:
– Need to re-order messages: MPI matching is always in order !
– Need to scan list of posted receives linearly:

• Wildcards
• 0.5 us overhead for empty receive list.

– Need to have a single point of matching: 
• shared memory device != network device

– Need to post the receives close to the matching point:
• Atomicity of list insertion/removal => over PCI bus



22www.myri.com
© 2005 Myricom, Inc.

MX design
• Progression thread: helper thread to provide host cycle when the

application is not calling MX functions
– MX is thread-safe
– Overlap communication with computation for large messages (without 

affecting small messages performance): once per 10ms max, only for rndv-
messages.

– handle resources starvation situations.
– Do not require explicit host involvement to progress the protocol (MPI 

requirement).

• NIC is stateless and connectionless:
– Can reboot NIC while application is running (with ack in the lib)
– Native shared receive queue.
– Do not require on-demand connection allocation scheme.



23www.myri.com
© 2005 Myricom, Inc.

MX design
• Ack at the lib level: move the reliability from the NIC to the host

– Piggybacking of acks on return traffic.
– Acks aggregation (reordering of messages in the host)
– Flow control (throttle fast sender against slow receiver)
– Can add checksum computation for end-to-end (application-to-application) 

reliability.

• No explicit memory registration:
– Memory registration is in the critical path !
– Tricky to avoid (rcache, tricks, etc)
– Low-overhead implementation possible.
– Non-pipelined overlap possible.

– User-level RDMA is not worth it.



24www.myri.com
© 2005 Myricom, Inc.

MX design
• In-order matching but not delivery:

– Can receive out of order from hardware.
– Reordering by the host (lot of cycles, lot of buffers)

• Native support for unexpected messages:
– It happens a lot.
– Reduce unexpected overhead (optimistic storage).



www.myri.com
© 2005 Myricom, Inc.

MPICH-MX

• MPI_Isend => mx_isend
• MPI_Irecv => mx_irecv
• MPI_Issend => mx_issend
• MPI_Test => mx_test

• One-to-one correspondance between MX messages and MPI-
messages

• MPI layer still adds communicators, datatypes, collectives
• => Having all the core functionality done previously by MPICH-

GM directly inside the MX core allows more flexibility in the 
implementation and better performance for a lot of tasks.



www.myri.com
© 2005 Myricom, Inc.

convenience MPI functions

ADI
CH2

MPICH1-GM stack

CH_P4CH_MPL
CH_GM

shmem/
self

CH_P4CH_MPL CH_NX

GM

applications
MPI API



www.myri.com
© 2005 Myricom, Inc.

convenience MPI functions

ADI
CH2

MPICH1-MX stack

CH_P4CH_MPL

CH_MX

shmem/self
gm-comm

MX
CH_NX

applications
MPI API



28www.myri.com
© 2005 Myricom, Inc.

Route dispersion (I)
• CLOS topology: multiple paths between peers (for each bisection, there is a set of 

routes that is contention-free).
• Route dispersion: use multiple routes when sending messages to the same 

destination.



29www.myri.com
© 2005 Myricom, Inc.

Route dispersion (II)

• Route dispersion statistically decreases contention in the fabric: 
traffic is spread on multiples links, probability of link sharing is less.
– Route dispersion does not improve point to point bandwidth if no contention.

• Route dispersion may hide bad links: spreading the packets on 
several paths increases robustness to single link failure.

• Route dispersion creates disorder: packets can pass each other when 
sent on different paths. Bad if firmware expects order to detect packet 
loss, or to deliver messages in order to the host.

• Route dispersion dramatically increases the size of the route table.
• Route dispersion uses routes given by the mapper/FMS: good route 

selection and load balancing still very important.



30www.myri.com
© 2005 Myricom, Inc.

Route dispersion (III)
• Round-robin route dispersion: switch to a new path for a particular 

destination for every fragment/packet sent on the wire.
• Pros: simple to implement, somewhat deterministic, link failure 

resilience.
• Cons: create disorder, statistic contention reduction is average.

• Adaptive route dispersion: switch to a new path for a particular 
destination only if contention is detected by back-pressure.
– If packet takes longer than normal to be injected in the fabric.

• Pros: best contention reduction, limit disorder, fall back on round-
robin scheme on worst case.

• Cons: no link failure resilience, harder to implement.



31www.myri.com
© 2005 Myricom, Inc.

Conclusion

• MPI momentum is huge:
– Do not port MPI on top of interconnect.
– Port interconnect under MPI.

• Scalability is not hard:
– basic rules.

• Not a link problem:
– Throwing bandwidth at it is not a solution, it’s makeup.



32www.myri.com
© 2005 Myricom, Inc.

Myri-10G NICs

10GBase-CX4 10GBase-R XAUI over ribbon fiber

These are 10-Gigabit Ethernet 
NICs. Use them with your 
favorite brand of 10-Gigabit 
Ethernet switch and Myricom’s 
bundled driver, and you will see 
9.6 Gbits/s (netperf) TCP/IP 
data rate (Linux, Opterons).
Jumbo frames are supported.

These are 10-Gigabit Myrinet 
NICs. When connected to a 10G 
Myrinet switch, and when using 
MX software, you will see 
performance metrics of:
• 2.2µs MPI latency
• 1.2 GBytes/s data rate
• Very low host-CPU utilization

These NICs are 8-lane PCI Express, all based on the Myricom Lanai-Z8E chip


	Lessons learned from MPI
	GM design
	MPICH1-GM stack
	EAGER protocol
	small messages : EAGER protocol
	small messages : EAGER protocol
	large messages : RENDEZ-VOUS protocol
	large messages : RENDEZ-VOUS protocol
	large messages : RENDEZ-VOUS protocol
	Very large messages: RENDEZ-VOUS protocol
	Registration
	GM Design review (MPI)
	Myrinet Express
	MX protocol
	Tiny messages
	Small messages
	Medium messages
	Large messages
	Large messages
	MPI communication (non) overlap
	Design trial and error: matching in the NIC
	MX design
	MX design
	MX design
	MPICH-MX
	MPICH1-GM stack
	MPICH1-MX stack
	Route dispersion (I)
	Route dispersion (II)
	Route dispersion (III)
	Conclusion
	Myri-10G NICs

